Friday, November 25, 2016

Simultaneously Solving in General Integers a Nonlinear System of Twelve Simultaneous Nonlinear Equations

Jsun Yui Wong

The computer program listed below seeks one or more integer solutions to the following problem:

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2 + 13 * (X(18) - 2) ^ 2 + (X(19) - 3) ^ 2 + X(20) ^ 2 = 3155,

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2 + 13 * (X(18) - 2) ^ 2 + (X(19) - 3) ^ 2 = 3119,

 X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2
=  2902,

 X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2  =  1590,

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2  =  659,

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2  =  395,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1 + X(13) ^ 1   =  348,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2   =  468,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2205.868,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2206.889,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2208.886,

-.5 * (X(1) * X(4) – X(2) * X(3) + X(3) * X(9) – X(5) * X(9) + X(5) * X(8) – X(6) * X(7)) = 0,

and

1<= Integers X(i)<= 9 for i=1 through 20.  

Equations 1, 2, 3, 4, and 5 above are based on page 147 of Asaadi [1].  Equation 6 is based on page 122 of Hock and Schittkowski [7], equations 9, 10, and 11 are based on page 112 of the same book,  and equation 12 is based on page 117 of the same book, as well.

The starting vector is 94 A(KK) = 5 + FIX(RND * 2.98).  The difference between each element of the vector and its optimal value--whatever the optimal number is-- is less than the difference between 1 and 9 (or 8).  Thus, starting vectors like this starting vector are generally usable.  One also notes lines 256, 257, 266, and 267.


0 REM DEFDBL A-Z
3 DEFINT J, K, X
4 DIM X(342), A(342), L(333), K(333)
12 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17
    91 FOR KK = 1 TO 20


        94 A(KK) = 5 + FIX(RND * 2.98)



    95 NEXT KK
    128 FOR I = 1 TO 3000000



        129 FOR K = 1 TO 20




            131 X(K) = A(K)
        132 NEXT K
        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 20)




            182 IF RND < -.1 THEN 183 ELSE GOTO 189

            183 R = (1 - RND * 2) * A(B)
            186 X(B) = A(B) + (RND ^ 3) * R
            187 REM IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))
            188 GOTO 191
            189 IF RND < .5 THEN X(B) = A(B) - FIX(1 + RND * 2.99) ELSE X(B) = A(B) + FIX(1 + RND * 2.99)
        191 NEXT IPP
        255 FOR J45 = 1 TO 20




            256 IF X(J45) < 1 THEN X(J45) = A(J45)


            257 IF X(J45) > 9 THEN X(J45) = A(J45)


        259 NEXT J45

        264 X(13) = 348 - (X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1)

        266 IF X(13) < 1 THEN 1670




        267 IF X(13) > 9 THEN 1670



        268 N11 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2205.868
        269 N12 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2206.889
        270 N13 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2208.886
        273 N14 = -.5 * (X(1) * X(4) - X(2) * X(3) + X(3) * X(9) - X(5) * X(9) + X(5) * X(8) - X(6) * X(7)) - 0

        275 N15 = X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2 - 468

        276 N16 = -395 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2




        278 N17 = -659 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2
        279 N18 = -1590 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2

        280 N19 = -2902 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2


        281 N20 = -3119 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2 + 13 * (X(18) - 2) ^ 2 + (X(19) - 3) ^ 2


        282 N21 = -3155 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2 + 13 * (X(18) - 2) ^ 2 + (X(19) - 3) ^ 2 + X(20) ^ 2


        287 P = -ABS(N11) - ABS(N12) - ABS(N13) - ABS(N14) - ABS(N15) - ABS(N16) - ABS(N17) - ABS(N18) - ABS(N19) - ABS(N20) - ABS(N21)


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 20


            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1888 IF M < -18 THEN 1999


    1910 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10)
    1912 PRINT A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18), A(19), A(20), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [14]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-31758 is shown below:

6      6      6      6      6
6      6      6      6      6
6      6      6      6      6
6      6      6      6      6
-9.020425E-04      -31878

6      6      6      6      6
6      6      6      6      6
5      6      7      1      4
6      7      6      6      6
-17.0009      -31871

6      6      6      6      6
6      6      6      6      6
6      6      6      6      6
6      6      6      6      6
-9.020425E-04      -31860

6      6      6      6      6
6      6      6      6      6  
6      6      6      6      6
6      6      6      6      6
-9.020425E-04      -31759

6      6      5      5      6
6      5      5      9      5
6      6      6      6      6
6      6      6      6      6
-17.02178       -31758

Above there is no rounding by hand; it is just straight copying by hand from the screen.
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [14], the wall-clock time through JJJJ=-31758 was 105 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  J. Asaadi, A Computational Comparison of Some Nonlinear Programs, Mathematical Programming, Vol. 4 (1973),  pp. 144-154.
[2] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.
[3] F. Glover, 1986. Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research, vol. 13, 5, 533-549
[4] F. Glover, 1989. Tabu Search, Part 1. ORSA Journal on Computing, vol. 1, number 3, 190-206.
[5] F. Glover, 1989. Tabu Search, Part 2. ORSA Journal on Computing, vol. 2, number 1, 4-32.
[6] Tianmin Han, Yuhuan Han, Solving large scale nonlinear equations by a new ODE numerical integration method, Applied Mathematics, 2010, 1, pp. 222-229. http://www.SciRP.org/journal/am.
[7] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1981.
[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.
[9] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.
[10] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[11] William H. Mills, A System of Quadratic Diophantine Equations, Pacific Journal of Mathematics, 3 (1953), pp. 209-220.
[12] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.
[13] K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer, 1987.
[14] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[15] Wolfram Research, Inc., Diophantine Polynomial Systems. https:/reference.wolfram.com/language/tutorial/DiophantineReduce.html.
[16] Jsun Yui Wong (2013, November 11). Solving Nonlinear Systems of Equations with the Domino Method, Second Edition. http://myblogsubstance.typepad.com/substance/2013/11/solving-nonlinear-systems-of-equations-with-the-domino-method-second-edition.html.
[17] Jsun Yui Wong (2015, October 26). Testing the Domino Method of General Integer Nonlinear Programming with Brown’s Almost Linear System of Fifteen Equations, Second Edition. http://myblogsubstance.typepad.com/substance/2015/10/





Tuesday, November 22, 2016

Simultaneously Solving in General Integers a Nonlinear System of Ten Simultaneous Nonlinear Equations

Jsun Yui Wong

The computer program listed below seeks one or more integer solutions to the following problem:

 X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2
=  2902,

 X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2  =  1590,

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2  =  659,

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2  =  395,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1 + X(13) ^ 1   =  348,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2   =  468,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2205.868,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2206.889,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2208.886,

-.5 * (X(1) * X(4) – X(2) * X(3) + X(3) * X(9) – X(5) * X(9) + X(5) * X(8) – X(6) * X(7)) = 0, and

1<= Integers X(i)<= 100 for i=1 through 17.  

Equations 1, 2, and 3 above are based on page 147 of Asaadi [1].  Equation 4 is based on page 122 of Hock and Schittkowski [7], equations 7, 8, and 9 are based on page 112 of the same book,  and equation 10 is based on page 117 of the same book, as well.

The starting vector is 94 A(KK) = 3 + FIX(RND * 9.98).  The difference between each element of the vector and its optimal value--whatever the optimal number is--is less than the difference between 1 and 100 (or 99).  Thus, starting vectors like this starting vector are generally usable.  One also notes lines 256, 257, 266, and 267.


0 REM DEFDBL A-Z
3 DEFINT J, K, X
4 DIM X(342), A(342), L(333), K(333)
12 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17
    91 FOR KK = 1 TO 17


        94 A(KK) = 3 + FIX(RND * 9.98)



    95 NEXT KK
    128 FOR I = 1 TO 2000000


        129 FOR K = 1 TO 17


            131 X(K) = A(K)
        132 NEXT K
        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 17)


            182 IF RND < -.1 THEN 183 ELSE GOTO 189

            183 R = (1 - RND * 2) * A(B)
            186 X(B) = A(B) + (RND ^ 3) * R
            187 REM IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))
            188 GOTO 191
            189 IF RND < .5 THEN X(B) = A(B) - FIX(1 + RND * 2.99) ELSE X(B) = A(B) + FIX(1 + RND * 2.99)
        191 NEXT IPP
        255 FOR J45 = 1 TO 17


            256 IF X(J45) < 1 THEN X(J45) = A(J45)


            257 IF X(J45) > 100 THEN X(J45) = A(J45)


        259 NEXT J45

        264 X(13) = 348 - (X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1)
        266 IF X(13) < 1 THEN 1670



        267 IF X(13) > 100 THEN 1670



        268 N11 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2205.868
        269 N12 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2206.889
        270 N13 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2208.886
        273 N14 = -.5 * (X(1) * X(4) - X(2) * X(3) + X(3) * X(9) - X(5) * X(9) + X(5) * X(8) - X(6) * X(7)) - 0

        275 N15 = X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2 - 468

        276 N16 = -395 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2



        278 N17 = -659 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2
        279 N18 = -1590 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2

        280 N19 = -2902 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2 + (X(11) - 9) ^ 2 + 10 * (X(12) - 1) ^ 2 + 5 * (X(13) - 7) ^ 2 + 4 * (X(14) - 14) ^ 2 + 27 * (X(15) - 1) ^ 2 + X(16) ^ 4 + (X(17) - 2) ^ 2



        287 P = -ABS(N11) - ABS(N12) - ABS(N13) - ABS(N14) - ABS(N15) - ABS(N16) - ABS(N17) - ABS(N18) - ABS(N19)



        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 17


            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P

    1670 NEXT I
    1888 IF M < -5 THEN 1999

    1910 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10)
    1912 PRINT A(11), A(12), A(13), A(14), A(15), A(16), A(17), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [14]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-31662 is shown below:

6      6      6      6      6
6      6      6      6      6
6      6      6      6      6
6      6      -9.020425E-04      -31717  

6      6      6      6      6
6      6      6      6      6
6      6      6      22      6
6      6      -9.020425E-04      -31662  

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [14], the wall-clock time through JJJJ=-31662 was 45 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References
[1]  J. Asaadi, A Computational Comparison of Some Nonlinear Programs, Mathematical Programming, Vol. 4 (1973),  pp. 144-154.
[2] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.
[3] F. Glover, 1986. Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research, vol. 13, 5, 533-549
[4] F. Glover, 1989. Tabu Search, Part 1. ORSA Journal on Computing, vol. 1, number 3, 190-206.
[5] F. Glover, 1989. Tabu Search, Part 2. ORSA Journal on Computing, vol. 2, number 1, 4-32.
[6] Tianmin Han, Yuhuan Han, Solving large scale nonlinear equations by a new ODE numerical integration method, Applied Mathematics, 2010, 1, pp. 222-229. http://www.SciRP.org/journal/am.
[7] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1981.
[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.
[9] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.
[10] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[11] William H. Mills, A System of Quadratic Diophantine Equations, Pacific Journal of Mathematics, 3 (1953), pp. 209-220.
[12] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.
[13] K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer, 1987.
[14] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[15] Wolfram Research, Inc., Diophantine Polynomial Systems. https:/reference.wolfram.com/language/tutorial/DiophantineReduce.html.
[16] Jsun Yui Wong (2013, November 11). Solving Nonlinear Systems of Equations with the Domino Method, Second Edition. http://myblogsubstance.typepad.com/substance/2013/11/solving-nonlinear-systems-of-equations-with-the-domino-method-second-edition.html.
[17] Jsun Yui Wong (2015, October 26). Testing the Domino Method of General Integer Nonlinear Programming with Brown’s Almost Linear System of Fifteen Equations, Second Edition. http://myblogsubstance.typepad.com/substance/2015/10/




Saturday, November 19, 2016

Simultaneously Solving in General Integers a Nonlinear System of Seven Simultaneous Nonlinear Equations

Jsun Yui Wong

The computer program listed below seeks one or more integer solutions to the following problem:

X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2  =  395,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1 + X(13) ^ 1   =  348,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2   =  468,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2205.868,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2206.889,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2208.886,

-.5 * (X(1) * X(4) – X(2) * X(3) + X(3) * X(9) – X(5) * X(9) + X(5) * X(8) – X(6) * X(7)) = 0, and

1<= X(i)<= 100 for i=1 through 13.

Equation 1 above is based on page 122 of Hock and Schittkowski [6].  Equations 4, 5, and 6 are based on page 112 of the same book,  and equation 7 is based on page 117 of the same book, as well.

The starting vector is 94 A(KK) = 3 + FIX(RND * 9.98).   The difference between each element of the vector and its optimal value--whatever the optimal number is--is less than the difference between 1 and 100 (or 99).  Thus, starting vectors like this starting vector are generally usable.  One also notes lines 256, 257, 266, and 267.

0 REM DEFDBL A-Z
3 DEFINT J, K, X
4 DIM X(342), A(342), L(333), K(333)
12 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17
    91 FOR KK = 1 TO 13
        94 A(KK) = 3 + FIX(RND * 9.98)


    95 NEXT KK
    128 FOR I = 1 TO 1200000


        129 FOR K = 1 TO 13
            131 X(K) = A(K)
        132 NEXT K
        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 13)
            182 IF RND < -.1 THEN 183 ELSE GOTO 189

            183 R = (1 - RND * 2) * A(B)
            186 X(B) = A(B) + (RND ^ 3) * R
            187 REM IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))
            188 GOTO 191
            189 IF RND < .5 THEN X(B) = A(B) - FIX(1 + RND * 2.99) ELSE X(B) = A(B) + FIX(1 + RND * 2.99)
        191 NEXT IPP
        255 FOR J45 = 1 TO 13
            256 IF X(J45) < 1 THEN X(J45) = A(J45)


            257 IF X(J45) > 100 THEN X(J45) = A(J45)


        259 NEXT J45

        264 X(13) = 348 - (X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1)

        266 IF X(13) < 1 THEN 1670


        267 IF X(13) > 100 THEN 1670


        268 N11 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2205.868
        269 N12 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2206.889
        270 N13 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2208.886
        273 N14 = -.5 * (X(1) * X(4) - X(2) * X(3) + X(3) * X(9) - X(5) * X(9) + X(5) * X(8) - X(6) * X(7)) - 0

        275 N15 = X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2 - 468

        276 N16 = -395 + X(1) ^ 2 + X(2) ^ 2 + X(1) * X(2) - 14 * X(1) - 16 * X(2) + (X(3) - 10) ^ 2 + 4 * (X(4) - 5) ^ 2 + (X(5) - 3) ^ 2 + 2 * (X(6) - 1) ^ 2 + 5 * X(7) ^ 2 + 7 * (X(8) - 11) ^ 2 + 2 * (X(9) - 10) ^ 2 + (X(10) - 7) ^ 2




        277 P = -ABS(N11) - ABS(N12) - ABS(N13) - ABS(N14) - ABS(N15) - ABS(N16)




        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 13
            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P

    1670 NEXT I
    1888 IF M < -3 THEN 1999

    1910 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10)
    1912 PRINT A(11), A(12), A(13), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [13]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-27959 is shown below:

4     5      6    3      7    
4    8       8     7     9
3     7      1            -2.535553       -31976

6      6      6      6      6
6      6      6      6      6
6      6      6      -9.020425E-04
-28865                                

3    5      6     2      7    
3    8     8       8     6
6     6      6     -1.685219       -28260

3    5      6     2      7    
3    8     8       8     6
6     6      6     -1.685219       -28208

4     5      6    3      7    
4    8       8     7     9
3     7      1            -2.535553       -27987

6      6      6      6      6
6      6      6      6      6
6      6      6      -9.020425E-04
-27959                                          

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [13], the wall-clock time through JJJJ=-27959 was four hours.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[2] F. Glover, 1986. Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research, vol. 13, 5, 533-549

[3] F. Glover, 1989. Tabu Search, Part 1. ORSA Journal on Computing, vol. 1, number 3, 190-206.

[4] F. Glover, 1989. Tabu Search, Part 2. ORSA Journal on Computing, vol. 2, number 1, 4-32.

[5] Tianmin Han, Yuhuan Han, Solving large scale nonlinear equations by a new ODE numerical integration method, Applied Mathematics, 2010, 1, pp. 222-229. http://www.SciRP.org/journal/am.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1981.

[7] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.

[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[9] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[10] William H. Mills, A System of Quadratic Diophantine Equations, Pacific Journal of Mathematics, 3 (1953), pp. 209-220.

[11] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[12] K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer, 1987.

[13] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[14] Wolfram Research, Inc., Diophantine Polynomial Systems.
https:/reference.wolfram.com/language/tutorial/DiophantineReduce.html.

[15] Jsun Yui Wong (2013, November 11). Solving Nonlinear Systems of Equations with the Domino Method, Second Edition. http://myblogsubstance.typepad.com/substance/2013/11/solving-nonlinear-systems-of-equations-with-the-domino-method-second-edition.html.

[16] Jsun Yui Wong (2015, October 26). Testing the Domino Method of General Integer Nonlinear Programming with Brown’s Almost Linear System of Fifteen Equations, Second Edition. http://myblogsubstance.typepad.com/substance/2015/10/

Thursday, November 3, 2016

Solving in General Integers a Nonlinear System of Six Simultaneous Nonlinear Equations

Jsun Yui Wong

The computer program listed below seeks one or more integer solutions to the following problem:

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1 + X(13) ^ 1   =  348,

X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2   =  468,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2205.868,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2206.889,

10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) = 2208.886,

-.5 * (X(1) * X(4) – X(2) * X(3) + X(3) * X(9) – X(5) * X(9) + X(5) * X(8) – X(6) * X(7)) = 0, and

1<= X(i)<= 11 for i=1 through 13.

Equations 3, 4, and 5 above are based on page 112 of Hock and Schittkowski [6].  Equation 6 is based on page 117 of Hock and Schittkowski [6].

One notes lines 94, 256, 257, 264, 266, and 267.

0 REM DEFDBL A-Z
3 DEFINT J, K, X
4 DIM X(342), A(342), L(333), K(333)
5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17
    91 FOR KK = 1 TO 13
        94 A(KK) = 1 + FIX(RND * 11)


    95 NEXT KK
    128 FOR I = 1 TO 200000


        129 FOR K = 1 TO 13
            131 X(K) = A(K)
        132 NEXT K
        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 13)
            182 IF RND < -.1 THEN 183 ELSE GOTO 189

            183 R = (1 - RND * 2) * A(B)
            186 X(B) = A(B) + (RND ^ 3) * R
            187 REM IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))
            188 GOTO 191
            189 IF RND < .5 THEN X(B) = A(B) - FIX(1 + RND * 2.99) ELSE X(B) = A(B) + FIX(1 + RND * 2.99)
        191 NEXT IPP
        255 FOR J45 = 1 TO 13
            256 IF X(J45) < 1 THEN X(J45) = A(J45)

            257 IF X(J45) > 11 THEN X(J45) = A(J45)

        259 NEXT J45

        264 X(13) = 348 - (X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1)
        266 IF X(13) < 1 THEN 1670



        267 IF X(13) > 11 THEN 1670



        268 N11 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ (-.25) + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2205.868
        269 N12 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .125 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2206.889
        270 N13 = 10 * X(1) * X(2) ^ (-1) * X(4) ^ 2 * X(6) ^ (-3) * X(7) ^ .5 + 15 * X(1) ^ (-1) * X(2) ^ (-2) * X(3) * X(4) * X(5) ^ (-1) * X(7) ^ (-.5) + 20 * X(1) ^ (-2) * X(2) * X(4) ^ (-1) * X(5) ^ (-2) * X(6) + 25 * X(1) ^ 2 * X(2) ^ 2 * X(3) ^ (-1) * X(5) ^ .5 * X(6) ^ (-2) * X(7) - 2208.886
        273 N14 = -.5 * (X(1) * X(4) - X(2) * X(3) + X(3) * X(9) - X(5) * X(9) + X(5) * X(8) - X(6) * X(7)) - 0

        275 N15 = X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 2 + X(11) ^ 2 + X(12) ^ 2 + X(13) ^ 2 - 468

        276 N16 = X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2 + X(4) ^ 2 + X(5) ^ 2 + X(6) ^ 2 + X(7) ^ 2 + X(8) ^ 2 + X(9) ^ 2 + X(10) ^ 1 + X(11) ^ 1 + X(12) ^ 1 + X(13) ^ 1 - 348



        277 P = -ABS(N11) - ABS(N12) - ABS(N13) - ABS(N14) - ABS(N15)


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 13
            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1888 IF M < -.8 THEN 1999



    1910 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10)
    1912 PRINT A(11), A(12), A(13), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [13]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-30440 is shown below:

6      4       2       7      6
8      8       7      3       8
8     2      3       -.6467603      -31890

4       5       3       6       7
6       9       8       3       3
7      6      7      -.7975526      -31562

6      6      6      6      6
6      6      6      6      6
6      6      6      -9.020425E-04
-30834    

6      6      6      6      6
6      6      6      6      6
6      6      6      -9.020425E-04
-30440  

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [13], the wall-clock time through JJJJ=-30440 was twenty minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[2] F. Glover, 1986. Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research, vol. 13, 5, 533-549

[3] F. Glover, 1989. Tabu Search, Part 1. ORSA Journal on Computing, vol. 1, number 3, 190-206.

[4] F. Glover, 1989. Tabu Search, Part 2. ORSA Journal on Computing, vol. 2, number 1, 4-32.

[5] Tianmin Han, Yuhuan Han, Solving large scale nonlinear equations by a new ODE numerical integration method, Applied Mathematics, 2010, 1, pp. 222-229. http://www.SciRP.org/journal/am.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1981.

[7] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.

[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[9] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[10] William H. Mills, A System of Quadratic Diophantine Equations, Pacific Journal of Mathematics, 3 (1953), pp. 209-220.

[11] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[12] K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer, 1987.

[13] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[14] Wolfram Research, Inc., Diophantine Polynomial Systems. https:/reference.wolfram.com/language/tutorial/DiophantineReduce.html.

[15] Jsun Yui Wong (2013, November 11). Solving Nonlinear Systems of Equations with the Domino Method, Second Edition. http://myblogsubstance.typepad.com/substance/2013/11/solving-nonlinear-systems-of-equations-with-the-domino-method-second-edition.html.

[16] Jsun Yui Wong (2015, October 26). Testing the Domino Method of General Integer Nonlinear Programming with Brown’s Almost Linear System of Fifteen Equations, Second Edition. http://myblogsubstance.typepad.com/substance/2015/10/