Monday, September 25, 2017

A Fractional Programming Problem and Its Integer Version

Jsun Yui Wong

I.  Tsai's Example 3 [20, p. 408]

The computer program listed below seeks to solve the following problem from page 408 of Tsai [20].

Minimize        (2 + X(5)) / (X(1) * X(2) * (2 * X(3) + X(4))) - X(5) ^ .5 * X(3) ^ 1.5 + 2 * X(2) + X(4)
   
subject to

   8 / (X(1) * (X(2) + 3 * X(4)) ^ 2) + 1 / (X(5) ^ 3)<=2

  - 2 * X(1) + X(3) - X(4)<=10

   X(1) + X(3) + .5 * X(5)<=8

   0.1<X(1), X(2), X(3), X(4), X(5)<=10.

"This program is a highly NFP program unsolvable by current fractional programming methods," Tsai [20, p. 408].

0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37
    70 FOR J44 = 1 TO 5

        72 A(J44) = .1 + RND * 9.9


    73 NEXT J44


    128 FOR I = 1 TO 1000


        129 FOR KKQQ = 1 TO 5

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))


            181 J = 1 + FIX(RND * 5)

            183 r = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * r

        191 NEXT IPP

        196 FOR J99 = 1 TO 5

            201 IF X(J99) < .1 THEN 1670
            203 IF X(J99) > 10 THEN 1670
        204 NEXT J99

        305 X(6) = 2 - 8 / (X(1) * (X(2) + 3 * X(4)) ^ 2) - 1 / (X(5) ^ 3)


        306 X(7) = 10 + 2 * X(1) - X(3) + X(4)


        307 X(8) = 8 - X(1) - X(3) - .5 * X(5)

        325 FOR J99 = 6 TO 8

            327 XX(J99) = X(J99)



            330 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        331 NEXT J99



        357 POBA = -(2 + X(5)) / (X(1) * X(2) * (2 * X(3) + X(4))) + X(5) ^ .5 * X(3) ^ 1.5 - 2 * X(2) - X(4) + 1000000 * (X(6) + X(7) + X(8))


        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 8


            1459 A(KLX) = X(KLX)
        1460 NEXT KLX
        1557 GOTO 128

    1670 NEXT I


    1889 IF M < 22.82 THEN 1999

    1900 PRINT A(1), A(2), A(3), A(4), A(5)

    1902 PRINT A(6), A(7), A(8)

    1912 PRINT M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [24].  The complete output through JJJJ  =  -31999.52000000008 is shown below:

.294624862833304           .9357350062234917         5.932980600348823
.9232544671551575         3.544789073502854
0       0       0
22.84117291174397         -31999.55000000007

.295980801658799           .8495190820457937         5.999493655132955
.9500308216052291         3.409051086414363
0       0       0
22.8220604982404         -31999.52000000008

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [24], the wall-clock time for obtaining the output through JJJJ=   -31999.52000000008 was 15 seconds, including time for creating .EXE file.


II.  A First Look at the Same Example 3 of Tsai [20, p. 408] Plus the Constraint That X(i)=1, 2, 3,..., 10 Where i=1, 2, 3, 4, 5

In the following computer program for this integer fractional nonlinear programming example, one notes line 199, line 327, and line 1456, which are 199 X(J99) = INT(X(J99)), 327 XX(J99) = X(J99), and 1456 XXX(KLX) = XX(KLX), respectively.

0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37
    70 FOR J44 = 1 TO 5

        72 A(J44) = .1 + RND * 9.9


    73 NEXT J44


    128 FOR I = 1 TO 1000


        129 FOR KKQQ = 1 TO 5

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))


            181 J = 1 + FIX(RND * 5)

            183 r = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * r

        191 NEXT IPP

        196 FOR J99 = 1 TO 5

            199 X(J99) = INT(X(J99))

            201 IF X(J99) < .1 THEN 1670
            203 IF X(J99) > 10 THEN 1670
        204 NEXT J99

        305 X(6) = 2 - 8 / (X(1) * (X(2) + 3 * X(4)) ^ 2) - 1 / (X(5) ^ 3)


        306 X(7) = 10 + 2 * X(1) - X(3) + X(4)


        307 X(8) = 8 - X(1) - X(3) - .5 * X(5)

        325 FOR J99 = 6 TO 8

            327 XX(J99) = X(J99)



            330 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        331 NEXT J99



        357 POBA = -(2 + X(5)) / (X(1) * X(2) * (2 * X(3) + X(4))) + X(5) ^ .5 * X(3) ^ 1.5 - 2 * X(2) - X(4) + 1000000 * (X(6) + X(7) + X(8))




        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 8


            1456 XXX(KLX) = XX(KLX)

            1459 A(KLX) = X(KLX)
        1460 NEXT KLX
        1557 GOTO 128

    1670 NEXT I


    1889 IF M < 18 THEN 1999

    1900 PRINT A(1), A(2), A(3), A(4), A(5)

    1902 PRINT A(6), A(7), A(8)

    1903 PRINT XXX(6), XXX(7), XXX(8)

    1912 PRINT M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [24].  The complete output through JJJJ  =  -31999.93000000001 is shown below:

1       1       5       1       4    
0       0       0
1.484375         8         0
18.81522522954335              -31999.96000000001

1       1       5       1       4    
0       0       0
1.484375         8         0
18.81522522954335              -31999.93000000001

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [24], the wall-clock time for obtaining the output through JJJJ=  -31999.93000000001 was 8 seconds--most of these seconds were for creating .EXE file.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming. Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Piya Chootinan, Anthony Chen (2006).  Constraint Handling in genetic algorithms using a gradient-based repair method.  Computers and Operations Research 33 (2006) 2263-2281.

[5]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[6]  Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[8]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[9]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[10]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[11]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[12]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[13]  Ong Kok Meng, Ong Pauline, Sia Chee Kiong, H. A. Wahab, N. Jafferi. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem.  IOP Conf. Series: Materials Science and Engineering 165 (2017) 012032.

[14]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[15]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[16]  Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.

[17]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[18]  c. R. Seshan, V. G. Tikekar (1980)  Algorithms for Fractional Programming.  Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.

[19]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[20]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.

[21]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[22]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[23]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[24] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[25] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[26] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

[27]  Xin-She Yang, Amir Hossein Gandomi (2012).  Bat algorithm: a novel approach for global engineering optimization.  Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.

[28]  B. D. Youn, K. K. Choi (2004). A new responsesurface methodology for reliability-based design optimization.Computers and Structures 82 (2004) 241-256.

Tuesday, September 19, 2017

Solving a Nonlinear Programming Formulation Based on a Formulation for a Car Side Impact Design Problem Using the Method of This Blog, Revised Edition

Jsun Yui Wong

Essentially the revision is changing old line 204 through old line 220 to become new line 304 through new line 320, respectively.


0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37
    72 FOR J44 = 1 TO 4

        74 A(J44) = .5 + RND

    79 NEXT J44
    86 A(2) = .45 + RND * .9
    87 A(5) = .5 + RND * 2.125

    88 A(6) = .4 + RND * 1.1


    89 A(7) = .4 + RND * 1.1
    95 IF RND < .5 THEN A(8) = .192 ELSE A(8) = .345

    96 IF RND < .5 THEN A(9) = .192 ELSE A(9) = .345



    98 A(10) = -30 + RND * 60


    99 A(11) = -30 + RND * 60

    128 FOR I = 1 TO 5000


        129 FOR KKQQ = 1 TO 11

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))



            181 J = 1 + FIX(RND * 11)

            183 r = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * r
        191 NEXT IPP

        197 REM

        198 IF RND < .5 THEN X(8) = .192 ELSE X(8) = .345

        199 IF RND < .5 THEN X(9) = .192 ELSE X(9) = .345


        221 IF X(1) < .5 THEN 1670

        222 IF X(1) > 1.5 THEN 1670
        223 IF X(2) < .45 THEN 1670

        224 IF X(2) > 1.36 THEN 1670

        225 IF X(3) < .5 THEN 1670

        226 IF X(3) > 1.5 THEN 1670

        235 IF X(4) < .5 THEN 1670

        236 IF X(4) > 1.5 THEN 1670
        245 IF X(5) < .5 THEN 1670

        246 IF X(5) > 2.625 THEN 1670

        247 IF X(6) < .4 THEN 1670

        248 IF X(6) > 1.5 THEN 1670
        249 IF X(7) < .4 THEN 1670

        250 IF X(7) > 1.5 THEN 1670


        251 IF X(8) < .192 THEN 1670

        252 IF X(8) > .345 THEN 1670
        253 IF X(9) < .192 THEN 1670

        254 IF X(9) > .345 THEN 1670

        255 IF X(10) < -30 THEN 1670

        256 IF X(10) > 30 THEN 1670
        257 IF X(11) < -30 THEN 1670

        258 IF X(11) > 30 THEN 1670




        304 X(12) = -1.16 + .3717 * X(2) * X(4) + .00931 * X(2) * X(10) + .484 * X(3) * X(9) - .01343 * X(6) * X(10) + 1


        305 X(13) = -.261 + .0159 * X(1) * X(2) + .188 * X(1) * X(8) + .019 * X(2) * X(7) - .0144 * X(3) * X(5) - .0008757 * X(5) * X(10) - .08045 * X(6) * X(9) - .00139 * X(8) * X(11) - .000001575 * X(10) * X(11) + .32


        306 X(14) = -.214 - .00817 * X(5) + .131 * X(1) * X(8) + .0704 * X(1) * X(9) - .03099 * X(2) * X(6) + .018 * X(2) * X(7) - .0208 * X(3) * X(8) - .121 * X(3) * X(9) + .00364 * X(5) * X(6) - .0007715 * X(5) * X(10) + .0005354 * X(6) * X(10) - .00121 * X(8) * X(11) + .32




        307 X(15) = -.74 + .61 * X(2) + .163 * X(3) * X(8) - .001232 * X(3) * X(10) + .166 * X(7) * X(9) - .227 * X(2) * X(2) + .32



        313 X(16) = -28.98 - 3.818 * X(3) + 4.2 * X(1) * X(2) - .0207 * X(5) * X(10) - 6.63 * X(6) * X(9) + 7.7 * X(7) * X(8) - .32 * X(9) * X(10) + 32



        316 X(17) = -33.86 - 2.95 * X(3) - .1792 * X(10) + 5.057 * X(1) * X(2) + 11.0 * X(2) * X(8) + .0215 * X(5) * X(10) + 9.98 * X(7) * X(8) - 22.0 * X(8) * X(9) + 32



        317 X(18) = -46.36 + 9.9 * X(2) + 12.9 * X(1) * X(8) - .1107 * X(3) * X(10) + 32


        318 X(19) = -4.72 + .5 * X(4) + .19 * X(2) * X(3) + .0122 * X(4) * X(10) - .009325 * X(6) * X(10) - .000191 * X(11) * X(11) + 4


        319 X(20) = -10.58 + .674 * X(1) * X(2) + 1.95 * X(2) * X(8) - .02054 * X(3) * X(10) + .0198 * X(4) * X(10) - .028 * X(6) * X(10) + 9.9



        320 X(21) = -16.45 + .489 * X(3) * X(7) + .843 * X(5) * X(6) - .0432 * X(9) * X(10) + .0556 * X(9) * X(11) + .000786 * X(11) * X(11) + 15.7



        329 FOR J99 = 12 TO 21



            330 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        331 NEXT J99


        333 REM


        355 POBA = -1.98 - 4.90 * X(1) - 6.67 * X(2) - 6.98 * X(3) - 4.01 * X(4) - 1.78 * X(5) - 2.73 * X(7) + 1000000 * (X(19) + X(20) + X(21) + X(12) + X(13) + X(14) + X(15) + X(16) + X(17) + X(18))



        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 21

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1557 GOTO 128

    1670 NEXT I
    1889 IF M < -22.59 THEN 1999


    1900 PRINT A(1), A(2), A(3)

    1903 PRINT A(4), A(5), A(6)
    1906 PRINT A(7), A(8), A(9)

    1907 PRINT A(10), A(11), A(12)

    1908 PRINT A(13), A(14), A(15)
    1909 PRINT A(16), A(17), A(18)

    1910 PRINT A(19), A(20), A(21)

    1912 PRINT M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with qb64v1000-win [22].  The complete output through JJJJ  =   -31991.2900000014 is shown below:

.5000005889982524      1.11192095479818              .5000002548373358
1.30987464494098        .4999999851212227            1.499999658347107
.3999999910600426        .345                                 .192
-20.35644718873207     4.23138571828183D-07               0
0      0      0    
0      0      0
0      0      0
-.22.57111470868293        -31996.82000000051

.5004298828587872      1.111506697535371         .4999999851051984
1.31034634007081       .499999985110199           1.499998784994892
.3999999910602496        .345                             .192
-20.39603494791161    -1.451902692732694D-10             0
0      0      0    
0      0      0
0      0      0
-22.57234476737785        -31991.2900000014

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.    

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [22], the wall-clock time for obtaining the output through JJJJ=  -31991.2900000014 was 21 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Piya Chootinan, Anthony Chen (2006).  Constraint Handling in genetic algorithms using a gradient-based repair method.  Computers and Operations Research 33 (2006) 2263-2281.

[5]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[6]  Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[8]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[9]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[10]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[11]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[12]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[13]  Ong Kok Meng, Ong Pauline, Sia Chee Kiong, H. A. Wahab, N. Jafferi. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem.  IOP Conf. Series: Materials Science and Engineering 165 (2017) 012032.

[14]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[15]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[16]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[17]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[18]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[19]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[20]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[21]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[22] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[23] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[24] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

[25]  Xin-She Yang, Amir Hossein Gandomi (2012).  Bat algorithm: a novel approach for global engineering optimization.  Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.

[26]  B. D. Youn, K. K. Choi (2004). A new responsesurface methodology for reliability-based design optimization. Computers and Structures 82 (2004) 241-256.

Sunday, September 17, 2017

Solving a Nonlinear Programming Formulation Based on a Formulation for a Car Side Impact Design Problem Using the Method of This Blog

Jsun Yui Wong

The computer program listed below seeks to solve the following formulation which is based on the formulation for a car side impact design problem in Gamdomi, Yang, and Alavi [5, pp. 2333-2335].

The following X(12) through X[21} are slack varibles.


Minimize       1.98 + 4.90 * X(1) + 6.67 * X(2) + 6.98 * X(3) + 4.01 * X(4) + 1.78 * X(5) + 2.73 * X(7)

subject to


          X(12) >= -1.16 + .3717 * X(2) * X(4) + .00931 * X(2) * X(10) + .484 * X(3) * X(9) - .01343 * X(6) * X(10) + 1


          X(13) >= -.261 + .0159 * X(1) * X(2) + .188 * X(1) * X(8) + .019 * X(2) * X(7) - .0144 * X(3) * X(5) - .0008757 * X(5) * X(10) - .08045 * X(6) * X(9) - .00139 * X(8) * X(11) - .000001575 * X(10) * X(11) + .32


          X(14) >= -.214 - .00817 * X(5) + .131 * X(1) * X(8) + .0704 * X(1) * X(9) - .03099 * X(2) * X(6) + .018 * X(2) * X(7) - .0208 * X(3) * X(8) - .121 * X(3) * X(9) + .00364 * X(5) * X(6) - .0007715 * X(5) * X(10) + .0005354 * X(6) * X(10) - .00121 * X(8) * X(11) + .32


         X(15) >= -.74 + .61 * X(2) + .163 * X(3) * X(8) - .001232 * X(3) * X(10) + .166 * X(7) * X(9) - .227 * X(2) * X(2) + .32


         X(16) >= -28.98 - 3.818 * X(3) + 4.2 * X(1) * X(2) - .0207 * X(5) * X(10) - 6.63 * X(6) * X(9) + 7.7 * X(7) * X(8) - .32 * X(9) * X(10) + 32


         X(17) >= -33.86 - 2.95 * X(3) - .1792 * X(10) + 5.057 * X(1) * X(2) + 11.0 * X(2) * X(8) + .0215 * X(5) * X(10) + 9.98 * X(7) * X(8) - 22.0 * X(8) * X(9) + 32


         X(18) >= -46.36 + 9.9 * X(2) + 12.9 * X(1) * X(8) - .1107 * X(3) * X(10) + 32


         X(19) >= -4.72 + .5 * X(4) + .19 * X(2) * X(3) + .0122 * X(4) * X(10) - .009325 * X(6) * X(10) - .000191 * X(11) * X(11) + 4


         X(20) >= -10.58 + .674 * X(1) * X(2) + 1.95 * X(2) * X(8) - .02054 * X(3) * X(10) + .0198 * X(4) * X(10) - .028 * X(6) * X(10) + 9.9


         X(21) >= -16.45 + .489 * X(3) * X(7) + .843 * X(5) * X(6) - .0432 * X(9) * X(10) + .0556 * X(9) * X(11) + .000786 * X(11) * X(11) + 15.7


          .5<=X(i) <=1.5, i=1, 3, 4    

     
          .45<=X(2) <=1.36 ,  (This change of 1.35 to 1.36 comes from the 1.36000 of the last column of Table 16 of Gandomi, Yang, and Alavi [5, p. 2335, Table 16.)

   
         .5<=X(5) <= 2.625  (This change from 0.875  to .5 comes from the 0.50000s of the row of X(5) of Table 16 of Gandomi, Yang, and Alavi [5, p. 2335, Table 16].)    .

         .4<=X(6),  X(7) <= 1.5.  (This change from 1.2  to 1.5 comes from the 1.50000s of the row of X(6) of Table 16 of Gandomi, Yang, and Alavi [5, p. 2335, Table 16])          


        .192<=X(8), X(9)<= .345
         
       -30<=X(10),  X(11)<=30.  (These changes of .5 and 1.5 to -30 to 30, respectively, come from the Erratum of G, Y, and Alavi [8].)

       The .61 (instead of 0.061) of line 207 of the following computer program comes from Youn and Choi [26, p. 250].

The following  computer program has these newer numbers.

     
0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01


    14 RANDOMIZE JJJJ
    16 M = -1D+37
    72 FOR J44 = 1 TO 4


        74 A(J44) = .5 + RND


    79 NEXT J44
    86 A(2) = .45 + RND * .9
    87 A(5) = .5 + RND * 2.125

    88 A(6) = .4 + RND * 1.1


    89 A(7) = .4 + RND * 1.1
    95 IF RND < .5 THEN A(8) = .192 ELSE A(8) = .345

    96 IF RND < .5 THEN A(9) = .192 ELSE A(9) = .345


    98 A(10) = -30 + RND * 60


    99 A(11) = -30 + RND * 60


    128 FOR I = 1 TO 5000


        129 FOR KKQQ = 1 TO 11

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))



            181 J = 1 + FIX(RND * 11)

            183 r = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * r
        191 NEXT IPP

        197 REM      X(3) = INT(X(3))

        198 IF RND < .5 THEN X(8) = .192 ELSE X(8) = .345

        199 IF RND < .5 THEN X(9) = .192 ELSE X(9) = .345
        201 REM X(3) =- (-.74 + .61 * X(2) + 0+ .166 * X(7) * X(9) - .227 * X(2) * X(2) + .32) / (  .163*x(8) -.001232*x(10)           )


        204 X(12) = -1.16 + .3717 * X(2) * X(4) + .00931 * X(2) * X(10) + .484 * X(3) * X(9) - .01343 * X(6) * X(10) + 1


        205 X(13) = -.261 + .0159 * X(1) * X(2) + .188 * X(1) * X(8) + .019 * X(2) * X(7) - .0144 * X(3) * X(5) - .0008757 * X(5) * X(10) - .08045 * X(6) * X(9) - .00139 * X(8) * X(11) - .000001575 * X(10) * X(11) + .32


        206 X(14) = -.214 - .00817 * X(5) + .131 * X(1) * X(8) + .0704 * X(1) * X(9) - .03099 * X(2) * X(6) + .018 * X(2) * X(7) - .0208 * X(3) * X(8) - .121 * X(3) * X(9) + .00364 * X(5) * X(6) - .0007715 * X(5) * X(10) + .0005354 * X(6) * X(10) - .00121 * X(8) * X(11) + .32



        207 X(15) = -.74 + .61 * X(2) + .163 * X(3) * X(8) - .001232 * X(3) * X(10) + .166 * X(7) * X(9) - .227 * X(2) * X(2) + .32



        213 X(16) = -28.98 - 3.818 * X(3) + 4.2 * X(1) * X(2) - .0207 * X(5) * X(10) - 6.63 * X(6) * X(9) + 7.7 * X(7) * X(8) - .32 * X(9) * X(10) + 32



        216 X(17) = -33.86 - 2.95 * X(3) - .1792 * X(10) + 5.057 * X(1) * X(2) + 11.0 * X(2) * X(8) + .0215 * X(5) * X(10) + 9.98 * X(7) * X(8) - 22.0 * X(8) * X(9) + 32



        217 X(18) = -46.36 + 9.9 * X(2) + 12.9 * X(1) * X(8) - .1107 * X(3) * X(10) + 32


        218 X(19) = -4.72 + .5 * X(4) + .19 * X(2) * X(3) + .0122 * X(4) * X(10) - .009325 * X(6) * X(10) - .000191 * X(11) * X(11) + 4


        219 X(20) = -10.58 + .674 * X(1) * X(2) + 1.95 * X(2) * X(8) - .02054 * X(3) * X(10) + .0198 * X(4) * X(10) - .028 * X(6) * X(10) + 9.9



        220 X(21) = -16.45 + .489 * X(3) * X(7) + .843 * X(5) * X(6) - .0432 * X(9) * X(10) + .0556 * X(9) * X(11) + .000786 * X(11) * X(11) + 15.7



        221 IF X(1) < .5 THEN 1670

        222 IF X(1) > 1.5 THEN 1670
        223 IF X(2) < .45 THEN 1670

        224 IF X(2) > 1.36 THEN 1670

        225 IF X(3) < .5 THEN 1670

        226 IF X(3) > 1.5 THEN 1670

        235 IF X(4) < .5 THEN 1670

        236 IF X(4) > 1.5 THEN 1670
        245 IF X(5) < .5 THEN 1670

        246 IF X(5) > 2.625 THEN 1670

        247 IF X(6) < .4 THEN 1670

        248 IF X(6) > 1.5 THEN 1670
        249 IF X(7) < .4 THEN 1670

        250 IF X(7) > 1.5 THEN 1670


        251 IF X(8) < .192 THEN 1670

        252 IF X(8) > .345 THEN 1670
        253 IF X(9) < .192 THEN 1670

        254 IF X(9) > .345 THEN 1670

        255 IF X(10) < -30 THEN 1670

        256 IF X(10) > 30 THEN 1670
        257 IF X(11) < -30 THEN 1670

        258 IF X(11) > 30 THEN 1670



        259 FOR J99 = 12 TO 21



            269 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        270 NEXT J99


        333 REM  

        355 POBA = -1.98 - 4.90 * X(1) - 6.67 * X(2) - 6.98 * X(3) - 4.01 * X(4) - 1.78 * X(5) - 2.73 * X(7) + 1000000 * (X(19) + X(20) + X(21) + X(12) + X(13) + X(14) + X(15) + X(16) + X(17) + X(18))



        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 21

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1557 GOTO 128

    1670 NEXT I
    1889 IF M < -22.59 THEN 1999


    1900 PRINT A(1), A(2), A(3)

    1903 PRINT A(4), A(5), A(6)
    1906 PRINT A(7), A(8), A(9)

    1907 PRINT A(10), A(11), A(12)

    1908 PRINT A(13), A(14), A(15)
    1909 PRINT A(16), A(17), A(18)


    1910 PRINT A(19), A(20), A(21)

    1912 PRINT M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with qb64v1000-win [22].  The complete output through JJJJ  =   -31991.2900000014 is shown below:

.5000005889982524      1.11192095479818              .5000002548373358
1.30987464494098        .4999999851212227            1.499999658347107
.3999999910600426        .345                                  .192
-20.35644718873207     4.23138571828183D-07               0
0      0      0    
0      0      0
0      0      0
-22.57111470868293        -31996.82000000051

.5004298828587872      1.111506697535371         .4999999851051984
1.31034634007081       .499999985110199           1.499998784994892
.3999999910602496        .345                               .192
-20.39603494791161    -1.451902692732694D-10             0
0      0      0    
0      0      0
0      0      0
-22.57234476737785        -31991.2900000014

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.    

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [22], the wall-clock time for obtaining the output through JJJJ=  -31991.2900000014 was 25 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Piya Chootinan, Anthony Chen (2006).  Constraint Handling in genetic algorithms using a gradient-based repair method.  Computers and Operations Research 33 (2006) 2263-2281.

[5]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[6]  Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[8]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[9]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[10]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[11]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[12]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[13]  Ong Kok Meng, Ong Pauline, Sia Chee Kiong, H. A. Wahab, N. Jafferi. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem.  IOP Conf. Series: Materials Science and Engineering 165 (2017) 012032.

[14]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[15]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[16]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[17]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[18]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[19]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[20]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[21]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[22] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[23] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[24] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

[25]  Xin-She Yang, Amir Hossein Gandomi (2012).  Bat algorithm: a novel approach for global engineering optimization.  Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.

[26]  B. D. Youn, K. K. Choi (2004). A new responsesurface methodology for reliability-based design optimization.Computer and Structures 82 (2004) 241-256.

Tuesday, September 5, 2017

Solving a Himmelblau Benchmark Problem Using the Method of This Blog

Jsun Yui Wong

The computer program listed below seeks to solve the Himmelblau problem on pp. 19-20 of Gandomi, Yang, and Alavi [6]; one takes note of the typos [7].


0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01


    14 RANDOMIZE JJJJ
    16 M = -1D+37
    72 FOR J44 = 1 TO 5


        74 A(J44) = 27 + RND * 75


    79 NEXT J44


    128 FOR I = 1 TO 5000



        129 FOR KKQQ = 1 TO 5

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))



            181 J = 1 + FIX(RND * 5)

            183 R = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * R
        191 NEXT IPP


        200 X(6) = 92 - 85.334407 - .0056858 * X(2) * X(5) - .0006262 * X(1) * X(4) + .0022053 * X(3) * X(5)


        202 X(7) = 110 - 80.51249 - .0071317 * X(2) * X(5) - .0029955 * X(1) * X(2) - .0021813 * X(3) * X(3)




        204 X(8) = 25 - 9.300961 - .0047026 * X(3) * X(5) - .0012547 * X(1) * X(3) - .0019085 * X(3) * X(4)



        207 X(9) = 0 + 85.334407 + .0056858 * X(2) * X(5) + .0006262 * X(1) * X(4) - .0022053 * X(3) * X(5)



        209 X(10) = -90 + 80.51249 + .0071317 * X(2) * X(5) + .0029955 * X(1) * X(2) + .0021813 * X(3) * X(3)





        211 X(11) = -20 + 9.300961 + .0047026 * X(3) * X(5) + .0012547 * X(1) * X(3) + .0019085 * X(3) * X(4)



        221 IF X(1) < 78 THEN 1670

        222 IF X(1) > 102 THEN 1670
        223 IF X(2) < 33 THEN 1670

        224 IF X(2) > 45 THEN 1670
        225 IF X(3) < 27 THEN 1670

        226 IF X(3) > 45 THEN 1670

        235 IF X(4) < 27 THEN 1670

        236 IF X(4) > 45 THEN 1670
        245 IF X(5) < 27 THEN 1670

        246 IF X(5) > 45 THEN 1670


        268 FOR J99 = 6 TO 11


            269 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        270 NEXT J99



        330 POBA = 40792.141 - 5.3578547 * X(3) * X(3) - .8356891 * X(1) * X(5) - 37.293239 * X(1) + 1000000 * X(6) + 1000000 * X(7) + 1000000 * X(8) + 1000000 * X(9) + 1000000 * X(10) + 1000000 * X(11)


        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 11

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1557 GOTO 128

    1670 NEXT I
    1889 IF M < 30665.5 THEN 1999



    1900 PRINT A(1), A(2), A(3)

    1903 PRINT A(4), A(5), A(6)
    1906 PRINT A(7), A(8), A(9)

    1908 PRINT A(10), A(11)


    1909 PRINT M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with qb64v1000-win [20].  The complete output through JJJJ=-31994.24000000092 is shown below:

78.00000000005112      33.00023762105803      29.99539016364582
44.99999513798106      36.77547568248082      0
0   0   0
0   0
30665.51753847873      -31994.24000000092

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.

The solution above is comparable to the solutions presented in Table 2 of Gandomi, Yang, and Alavi  [6, p. 20].

One notes that with the present algorithm none of the six constraints is violated because of line 269, which is 269 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [20], the wall-clock time for obtaining the output through JJJJ=-31994.24000000092 was one minute, total.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[5]  Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[6]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[8]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[9]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[10]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[11]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[12]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[13]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[14]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[15]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[16]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[17]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[18]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[19]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[20] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[21] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[22] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

Sunday, September 3, 2017

Solving a Sphere Problem in 5000 General Integers by Using the Method of This Blog

Jsun Yui Wong

The computer program listed below works on the following Sphere problem based on a problem in Gandomi et al. [5, p. 93].

Minimize            


  5000
(SIGMA X(i)^2)^.5
  i=1            

where -100<=X(i)<=100 and each X(i) is an integer, i=1, 2, 3,..., 5000.


0 DEFDBL A-Z

2 DEFINT K, X

3 DIM B(5099), N(5099), A(5099), H(5099), L(5099), U(5099), X(5011), D(5011), P(5011), PS(5033)


12 FOR JJJJ = -32000 TO 32000 STEP .01


    14 RANDOMIZE JJJJ
    16 M = -1D+37

    75 FOR J44 = 1 TO 5000


        76 A(J44) = -100 + RND * 200



    79 NEXT J44


    128 FOR I = 1 TO 30000


        129 FOR KKQQ = 1 TO 5000

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))


            181 J = 1 + FIX(RND * 5000)


            183 R = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * R
        191 NEXT IPP


        193 FOR J44 = 1 TO 5000



            221 IF X(J44) < -100 THEN 1670


            222 IF X(J44) > 100 THEN 1670



        223 NEXT J44
        241 SUMOF = 0
        244 FOR J66 = 1 TO 5000

            247 SUMOF = SUMOF + X(J66) ^ 2

        249 NEXT J66

        259 GOTO 332

        292 PRODOF = 1

        293 FOR J77 = 1 TO 5000

            295 PRODOF = PRODOF * COS(X(J77) / J77 ^ .5)


        296 NEXT J77


        329 REM POBA = -1 - (1 / 4000) * (SUMOF) + (PRODOF)

        332 POBA = -(SUMOF) ^ .5


        466 p = POBA

        1111 IF p <= M THEN 1670


        1452 M = p
        1454 FOR KLX = 1 TO 5000


            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1499 REM PRINT A(1), A(1200), M, JJJJ


        1557 GOTO 128

    1670 NEXT I
    1889 REM IF M < -.01 THEN 1999


    1900 PRINT A(1), A(2), A(3)


    1933 PRINT A(94), A(95), A(96)

    1935 PRINT A(1197), A(4998), A(4999)



    1936 PRINT A(5000), M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with qb64v1000-win [20].  The complete output through JJJJ=  -31999.98 is shown below:

0              0            0
0              0            0
0              0            0
0             -1           -32000

0             0             0
0             0             0  
0             0             0
0             0            -31999.99

0             0             0
0             0             0  
0             0             0
0             0            -31999.98

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  Only the A's of line 1900 through line 1936 are shown above.  M=0 is optimal; see Gandomi, Yang, Talatahari, and Alavi [5, p. 93].

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [20], the wall-clock time for obtaining the output through JJJJ=-31999.98 was 40 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[5]  Amir Hossein Gandomi, Xin-She Yang, Siamak Talatahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[6]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[8]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[9]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[10]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[11]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[12]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[13]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[14]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[15]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[16]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[17]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[18]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[19]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[20] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[21] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[22] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

Saturday, September 2, 2017

Solving a Griewank Problem in 1200 General Integers by Using the Method of This Blog

Jsun Yui Wong

The computer program listed below works on the following Griewank problem based on a problem in Gandomi et al. [5, p. 93].  (Also see  www.mathworld.wolfram.com/GriewankFunction/html.)
     
Minimize  

                     n                     n
1+(1 / 4000)*SIGMA X(i)^2-PI COS(X(i)/i^.5 )
                     i=1                  i=1

where -600<=X(i)<=600 and each X(i) is an integer, i=1, 2, 3,..., 1200.


0 DEFDBL A-Z

2 DEFINT K, X


3 DIM B(1399), N(1399), A(1399), H(1399), L(1399), U(1399), X(1311), D(1311), P(1311), PS(1333)

12 FOR JJJJ = -32000 TO 32000 STEP .01


    14 RANDOMIZE JJJJ
    16 M = -1D+37

    75 FOR J44 = 1 TO 1200


        76 A(J44) = -600 + RND * 1200


    79 NEXT J44


    128 FOR I = 1 TO 10000


        129 FOR KKQQ = 1 TO 1200

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))


            181 J = 1 + FIX(RND * 1200)


            183 R = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * R
        191 NEXT IPP


        193 FOR J44 = 1 TO 1200



            221 IF X(J44) < -600 THEN 1670


            222 IF X(J44) > 600 THEN 1670



        223 NEXT J44
        241 SUMOF = 0
        244 FOR J66 = 1 TO 1200

            247 SUMOF = SUMOF + X(J66) ^ 2

        249 NEXT J66



        292 PRODOF = 1

        293 FOR J77 = 1 TO 1200

            295 PRODOF = PRODOF * COS(X(J77) / J77 ^ .5)


        296 NEXT J77


        329 POBA = -1 - (1 / 4000) * (SUMOF) + (PRODOF)




        466 p = POBA

        1111 IF p <= M THEN 1670


        1452 M = p
        1454 FOR KLX = 1 TO 1200

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1499 REM PRINT A(1), A(1200), M, JJJJ


        1557 GOTO 128

    1670 NEXT I
    1889 REM IF M < -.002 THEN 1999


    1900 PRINT A(1), A(2), A(3)


    1903 REM PRINT A(4), A(5), A(6)


    1933 REM PRINT A(94), A(95), A(96)

    1935 PRINT A(1197), A(1198), A(1199)


    1936 PRINT A(1200), M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [20].  The complete output through JJJJ=-31999.90000000002 is shown below:
 
-3             0            0
0              0            0
0            -2.923018515638994D-02         -32000

0             0             0
0             0             0
0            -3.687477901129832D-03         -31999.99

0             0             0
0             0             0
0            -9.591360299851246D-04         -31999.98

0             0             0
0             0             0
0            -1.241634136718078D-02         -31999.97000000001

0             0             0
0             0             0
0            -5.909225555920152D-02         -31999.96000000001

0             0             0
0             0             0
0            -1.137968021479058D-03         -31999.95000000001

0             0              0
0             0              0
0             0                                               -31999.94000000001

0             0              0  
0             0              0
0             0                                               -31999.93000000001

0             0              0
0             0              0
0             0                                              -31999.92000000001

0             0              0
0             0              0
0             0                                              -31999.91000000001

3             0              0
0             0              0
0     -2.456846362867342D-02                   -31999.90000000002

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  Only the A's of line 1900, line 1935, and line 1936 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [20], the wall-clock time for obtaining the output through JJJJ= -31999.90000000002 was 11 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011).  Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[5]  Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013).  Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.

[6]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:17-35.

[7]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Erratum to:  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (2013) 29:245.

[8]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[9]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.9

[10]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[11]  Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm - MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[12]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[13]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[14]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[15]  P. B. Thanedar, G. N. Vanderplaats (1995).  Survey of discrete variable optimization for structural design,  Journal of Structural Engineering, 121 (2), 301-306 (1995).

[16]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[17]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[18]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[19]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[20] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[21] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[22] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.