Tuesday, December 10, 2019

Solving Another Mixed-Integer Nonlinear Programming Problem in Sample Surveys



Jsun Yui Wong

The computer program listed below seeks to solve the following nonlinear integer programming problem from Raghav, Ali, and Bari [65, pp. 32-33]:

Minimize

X(9)+X(10)

subject to


 (.7893 + (X(5) - 1) * .06) / X(1) + (.4411 + (X(6) - 1) * .02) / X(2) + (.3576 + (X(7) - 1) * .02) / X(3) + (.3973 + (X(8) - 1) * .03) / X(4) - X(9) <= .00655


 (.8316 + (X(5) - 1) * .06) / X(1) + (.3358 + (X(6) - 1) * .02) / X(2) + (.1062 + (X(7) - 1) * .01) / X(3) + (.2791 + (X(8) - 1) * .02) / X(4) - X(10) <= .00454


 (2.4 +.9/X(5)* X(1) + (3.4 + .8 / X(6)) * X(2) + (4 + 1.25 / X(7)) * X(3) + (4.6 + 1.68 / X(8)) * X(4)))  <=5000


2<=X(1)<=1214

2<=X(2)<=822

2<=X(3)<=1028

2<=X(4)<=786

where X(1) through X(4) are integer variables, X(4) through X(8) are continuous variables and >1, and X(9) and X(10) are >=0.

One notes line 234, line 239, and  line 233, which are 234 X(9) = (.7893 + (X(5) - 1) * .06) / X(1) + (.4411 + (X(6) - 1) * .02) / X(2) + (.3576 + (X(7) - 1) * .02) / X(3) + (.3973 + (X(8) - 1) * .03) / X(4) - .00655,

239 X(10) = (.8316 + (X(5) - 1) * .06) / X(1) + (.3358 + (X(6) - 1) * .02) / X(2) + (.1062 + (X(7) - 1) * .01) / X(3) + (.2791 + (X(8) - 1) * .02) / X(4) - .00454, and

233 X(5) = .9 * X(1) * (1 / (5000 - 2.4 * X(1) - (3.4 + .8 / X(6)) * X(2) - (4 + 1.25 / X(7)) * X(3) - (4.6 + 1.68 / X(8)) * X(4))), respectively, from the long inequality constraints above, respectively.  That is an attempt to find active constraints.


0 DEFDBL A-Z
1 DEFINT K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J44(2002), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(22), CC(20), RR(20), WW(20), AL(50), SW(50), SV(50), C2(22), C3(22), C4(22), C5(22)

81 FOR JJJJ = -32000 TO 32000


    85 RANDOMIZE JJJJ

    86 M = -3E+50
    111 REM FOR J44 = 1 TO 4


    114 A(1) = 2 + FIX(RND * 1213)

    115 A(2) = 2 + FIX(RND * 821)

    116 A(3) = 2 + FIX(RND * 1027)

    117 A(4) = 2 + FIX(RND * 785)


    118 FOR J44 = 5 TO 10


        119 A(J44) = 1 + (RND * 2)


    120 NEXT J44

    128 FOR I = 1 TO 50000

        129 FOR KKQQ = 1 TO 10

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        151 FOR IPP = 1 TO FIX(1 + RND * 5)

            153 J = 1 + FIX(RND * 10)
            154 IF J < 4.5 THEN GOTO 162 ELSE GOTO 156

            155 REM GOTO 162

            156 r = (1 - RND * 2) * A(J)

            158 X(J) = A(J) + (RND ^ (RND * 15)) * r

            161 GOTO 169

            162 IF RND < .5 THEN X(J) = A(J) - INT(RND * 15) ELSE X(J) = A(J) + INT(RND * 15)

            164 REM IF A(J) = 0 THEN X(J) = 1 ELSE X(J) = 0

        169 NEXT IPP

        172 X(1) = INT(X(1))
        174 X(2) = INT(X(2))
        176 X(3) = INT(X(3))
        178 X(4) = INT(X(4))

        215 FOR J44 = 1 TO 10


            216 IF X(J44) < 0 THEN 1670
        219 NEXT J44
        220 FOR J44 = 1 TO 4

            221 IF X(J44) < 2 THEN 1670

        223 NEXT J44

        225 IF X(1) > 1214 THEN 1670
        226 IF X(2) > 822 THEN 1670


        227 IF X(3) > 1028 THEN 1670

        229 IF X(4) > 786 THEN 1670

        230 FOR J44 = 5 TO 8

            231 IF X(J44) <= 1## THEN 1670

        232 NEXT J44

        233 X(5) = .9 * X(1) * (1 / (5000 - 2.4 * X(1) - (3.4 + .8 / X(6)) * X(2) - (4 + 1.25 / X(7)) * X(3) - (4.6 + 1.68 / X(8)) * X(4)))


        234 X(9) = (.7893 + (X(5) - 1) * .06) / X(1) + (.4411 + (X(6) - 1) * .02) / X(2) + (.3576 + (X(7) - 1) * .02) / X(3) + (.3973 + (X(8) - 1) * .03) / X(4) - .00655


        239 X(10) = (.8316 + (X(5) - 1) * .06) / X(1) + (.3358 + (X(6) - 1) * .02) / X(2) + (.1062 + (X(7) - 1) * .01) / X(3) + (.2791 + (X(8) - 1) * .02) / X(4) - .00454


        326 FOR J44 = 1 TO 10

            328 IF X(J44) < 0 THEN 1670

        330 NEXT J44

        333 FOR J44 = 1 TO 4

            334 IF X(J44) < 2 THEN 1670

        336 NEXT J44


        471 P = -X(9) - X(10)

        1111 IF P <= M THEN 1670

        1450 M = P

        1454 FOR KLX = 1 TO 10

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX

        1557 GOTO 128
    1670 NEXT I

    1889 IF M < -.00011997 THEN 1999

    1933 PRINT A(1), A(2), A(3), A(4)

    1936 PRINT A(5), A(6), A(7), A(8), A(9), A(10), M, JJJJ 

1999 NEXT JJJJ


This BASIC computer program was run with QB64v1000-win [78]. The complete output of a single run through JJJJ= -31965 is shown below:

527  311  220  247
2.161809919487455          2.08329930063022         2.127126519609546
2.144582945096825         4.343164689580447D-05              7.626989558445075D-05
-1.197015424802552D-04   -31978

529        311        220        246
2.170670355426797               2.08392912799284                 2.127769788581231
2.136546310641485               4.449669608975741D-05         7.51952696422561D-05 
-1.196919657320135D-04   -31971

529  311  220  246
2.170670355426797               2.08392912799284                  2.12776979823337
2.136546310641485               4.449669657008732D-05         7.51952691619263D-05
-1.196919657320136D-04   -31965

.
.
.


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [78], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31965 was 8 seconds, not including the time for “Creating .EXE file.”  One can compare the computational results above with those in Raghav, Ali, and Bari [65, p. 33], where one can see the following numbers:  529, 311, 220, 246, 0.0001196, 0.000044, 0.000075.


Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[6] Miguel F. Anjos (2012), FLPLIB–Facility Layout Database. Retrieved on September 25 2012 from http://www.gerad.ca/files/Sites/Anjos/indexFR.html

[8] Ritu Arora, S. R. Arora (2014). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[9] Natahia Boland, Hadi Charkhgard, Martin Savelsbergh (2019). Preprocessing and cut generation techniques for multi-objective binary programming. European Journal of Operational Rearch 274 (2019) 858-875.

[10] Borndorfer, Prof. Dr. Ralf. Solving Multi-Objective Integer Programs. http://www.zib.de/projects/solving-multi-objective-integer-programs

[11] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.

[12] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.

[13] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[14] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[15] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[16] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[17] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[18] Pintu Das, Tapan Kumar Roy (2014). Multi-objective geometric programming and its application in gravel box problem. Journal of global research in computer science volume 5. no.7, july 2014. http://www.jgrcs.info

[19] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[20] Anoop K. Dhingra (1992). Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[21] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).

[22] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[23] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[24] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[25] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012. Retrieved on September 14 2012 from Google search.

[26] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[27] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.
[28] Y. Y.Haimes, L. S. Lasdon, D. A. Wismer (1971). On a bicriterion formulation of the problems of of integrated system identification and system optimization. Ieee Transactions on Systems, Man, and Cybernetics. 1971; 1(3); 296-297.
[29] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[30] David M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-Hill Book Company, 1972.

[31] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

[32] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry

[33] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[34] Frederick S. Hillier, Gerald J. Liebermann (1990). Introduction to Mathematical Programming. McGraw-Hill Publishing Company, New York.

[35] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[36] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout. Les Cahiers du GERAD. Retrieved from http://www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[37] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. Retrieved from http://www.optimization-online.org./DB_HTML/2012/04/3432.html

[38] C. L. Hwang, Hoon Byung Lee, F. A. Tillman, Chang Hoon Lie (1984). Nonlinear integer goal programming applied to optimal system reliability. IEEE Transactions on Reliability, Vol. R-33, No. 5, December 1984.

[39] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.

[40] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.

[41] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).
https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.

[42] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[43] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[44] Hoon Byung Lee (1978). Integer programming and nonlinear integer goal programming applied to system reliability problems. A
Master’s Thesis, Master of Science, Department of Industrial Engineering, Kansas State University, Manhattan, Kansas, 1978.

[45] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.

[46] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[47] Rein Luus (1975). Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[48] Milos Madic, Miroslav Radovanovic (2014). Optimization of machining processes using pattern search algorithm.
International Journal of Industrial Engineering Computations 5 (2014) 223-234. Homepage: http://www.GrowingScience.com/ijiec

[49] F. Masedu, M Angelozzi (2008). Modelling optimum fraction assignment in the 4X100 m relay race by integer linear programming. Italian Journal of Sports Sciences, Anno 13, No. 1, 2008, pp. 74-77.

[50] MathWorks, Mixed Integer Optimization. https://www.mathworks.com/help/gads;mixed-integer-optimization.html

[51] Kaisa Miettinen, Petrie Eskelinen, Francisco Ruiz, Mariano Luque (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research 206 (2010) 426-434.

[52] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering
and System Safety 152 (2016) 213-227.

[53] Mohamed Arezki Mellal, Edward J. Williams (2016). Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopla heuristic. Journal of Intelligent Manufacturing (2016) 27 (5): 927-942.

[54] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[55] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[56] A. Moradi, A. M. Nafchi, A. Ghanbarzadeh (2015). Multi-objective optimization of truss structures using the bee algorithm. (One can read this via Goodle search.)

[57] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints.  IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[58] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[59] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[60] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[61] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[62] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP). https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[63] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[64] Ciara Pike-Burke. Multi-Objective Optimization. https://www.lancaster.ac.uk/pg/pikeburc/report1.pdf.

[65]  Y.S. Raghav, I. Ali, A, Bari (2014)  Multi-objective nonlinear programming approach in multivariate stratified sample surveys in the case of non-response, Journal of Statistical Computation and Simulation, 84, pp.22-36.                                                                                                                         
[66] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.

[67] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[68] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.

[69] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[70] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[71] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.

[72] Isaac Siwale. A Note on Multi-Objective Mathematical Problems. https://www.aptech.com/wp-content/uploads/2012/09/MultObjMath.pdf

[73] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.

[74] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[75] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. Journal of computational design and engineering 5 (2018) 104-119.

[76] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[77] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[78] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[79] Zhongkai Xu, Way Kuo, Hsin-Hui Lin (1990). Optimization Limits in Improving System Reliability. IEEE Transactions on Reliability, Vol. 39, No. 1, 1990 April, pp. 51-60.

Sunday, December 8, 2019

Solving Another Mixed-Integer Nonlinear Programming Problem





Jsun Yui Wong

The computer program listed below seeks to solve the following nonlinear integer programming problem from Raghav, Ali, and Bari [65, p. 35]:

Minimize

 (((1 / 611.57) * ((493.33 + (X(5) - 1) * 37) / X(1) + (275.68 + (X(6) - 1) * 13.78) / X(2) + (223.52 + (X(7) - 1) * 13.97) / X(3) + (248.29 + (X(8) - 1) * 17.38) / X(4))) - .006701) ^ 2 / .006701 ^ 2 + ((1 / 994.14) * ((831.61 + (X(5) - 1) * 62.37) / X(1) + (335.76 + (X(6) - 1) * 16.79) / X(2) + (106.17 + (X(7) - 1) * 6.64) / X(3) + (279.11 + (X(8) - 1) * 19.54) / X(4)) - .004537) ^ 2 / .004537 ^ 2

subject to

(2.4 +.9/X(5)* X(1) + (3.4 + .8 / X(6)) * X(2) + (4 + 1.25 / X(7)) * X(3) + (4.6 + 1.68 / X(8)) * X(4)))  <=5000

2<=X(1)<=1214

2<=X(2)<=822

2<=X(3)<=1028

2<=X(4)<=786

where X(1) through X(4) are integer variables and X(4) through X(8) are continuous variables and are >1.

One notes line 233, which is 233 X(5) = .9 * X(1) * (1 / (5000 - 2.4 * X(1) - (3.4 + .8 / X(6)) * X(2) - (4 + 1.25 / X(7)) * X(3) - (4.6 + 1.68 / X(8)) * X(4))) from the long inequality constraint above.  That is an attempt to find an active constraint.


0 DEFDBL A-Z
1 DEFINT K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J44(2002), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(22), CC(20), RR(20), WW(20), AL(50), SW(50), SV(50), C2(22), C3(22), C4(22), C5(22)

81 FOR JJJJ = -32000 TO 32000

    85 RANDOMIZE JJJJ

    86 M = -3E+50
    111 REM FOR J44 = 1 TO 4


    114 A(1) = 2 + FIX(RND * 1213)

    115 A(2) = 2 + FIX(RND * 821)

    116 A(3) = 2 + FIX(RND * 1027)

    117 A(4) = 2 + FIX(RND * 785)


    118 FOR J44 = 5 TO 8



        119 A(J44) = 1 + (RND * 2)



    120 NEXT J44



    128 FOR I = 1 TO 50000


        129 FOR KKQQ = 1 TO 8

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        151 FOR IPP = 1 TO FIX(1 + RND * 5)

            153 J = 1 + FIX(RND * 8)

            154 IF J < 4.5 THEN GOTO 162 ELSE GOTO 156

            155 REM GOTO 162

            156 r = (1 - RND * 2) * A(J)

            158 X(J) = A(J) + (RND ^ (RND * 15)) * r

            161 GOTO 169

            162 REM  IF RND < .5 THEN X(J) = A(J) - INT(RND * 15) ELSE X(J) = A(J) + INT(RND * 15)
            163 IF RND < .5 THEN X(J) = A(J) - INT(RND * 15) ELSE X(J) = A(J) + INT(RND * 15)


            164 REM IF A(J) = 0 THEN X(J) = 1 ELSE X(J) = 0

        169 NEXT IPP

        172 X(1) = INT(X(1))
        174 X(2) = INT(X(2))
        176 X(3) = INT(X(3))
        178 X(4) = INT(X(4))

        215 FOR J44 = 1 TO 8


            216 IF X(J44) < 0 THEN 1670
        219 NEXT J44
        220 FOR J44 = 1 TO 4

            221 IF X(J44) < 2 THEN 1670

        223 NEXT J44

        225 IF X(1) > 1214 THEN 1670
        226 IF X(2) > 822 THEN 1670


        227 IF X(3) > 1028 THEN 1670

        229 IF X(4) > 786 THEN 1670

        230 FOR J44 = 5 TO 8

            231 IF X(J44) <= 1## THEN 1670

        232 NEXT J44

        233 X(5) = .9 * X(1) * (1 / (5000 - 2.4 * X(1) - (3.4 + .8 / X(6)) * X(2) - (4 + 1.25 / X(7)) * X(3) - (4.6 + 1.68 / X(8)) * X(4)))


        326 FOR J44 = 1 TO 8

            328 IF X(J44) < 0 THEN 1670

        330 NEXT J44

        333 FOR J44 = 1 TO 4

            334 IF X(J44) < 2 THEN 1670

        336 NEXT J44



        467 P = -(((1 / 611.57) * ((493.33 + (X(5) - 1) * 37) / X(1) + (275.68 + (X(6) - 1) * 13.78) / X(2) + (223.52 + (X(7) - 1) * 13.97) / X(3) + (248.29 + (X(8) - 1) * 17.38) / X(4))) - .006701) ^ 2 / .006701 ^ 2 - ((1 / 994.14) * ((831.61 + (X(5) - 1) * 62.37) / X(1) + (335.76 + (X(6) - 1) * 16.79) / X(2) + (106.17 + (X(7) - 1) * 6.64) / X(3) + (279.11 + (X(8) - 1) * 19.54) / X(4)) - .004537) ^ 2 / .004537 ^ 2


        1111 IF P <= M THEN 1670

        1450 M = P

        1454 FOR KLX = 1 TO 8

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX

        1557 GOTO 128
    1670 NEXT I

    1889 IF M < -.0007871 THEN 1999

    1933 PRINT A(1), A(2), A(3), A(4)

    1936 PRINT A(5), A(6), A(7), A(8), M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with QB64v1000-win [78]. The output of a single run through JJJJ= -31960 is summarized below:


540  313  211  248
2.147905655365354        2.114890065618677          2.166363222778617
2.20927598670702         -2.787029044276058D-04    -31978
.
.
.

541  313  211  247
2.146059528132376      2.108092383599432            2.156239922890985  
2.19301124463398       -2.786887217092242D-04    -31960         
.
.
.

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [78], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31960 was 8 seconds, not including the time for “Creating .EXE file.”  One can compare the computational results above with those in Raghav, Ali, and Bari [65, p. 35].

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[6] Miguel F. Anjos (2012), FLPLIB–Facility Layout Database. Retrieved on September 25 2012 from http://www.gerad.ca/files/Sites/Anjos/indexFR.html

[8] Ritu Arora, S. R. Arora (2014). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[9] Natahia Boland, Hadi Charkhgard, Martin Savelsbergh (2019). Preprocessing and cut generation techniques for multi-objective binary programming. European Journal of Operational Rearch 274 (2019) 858-875.

[10] Borndorfer, Prof. Dr. Ralf. Solving Multi-Objective Integer Programs. http://www.zib.de/projects/solving-multi-objective-integer-programs

[11] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.

[12] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.

[13] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[14] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[15] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[16] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[17] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[18] Pintu Das, Tapan Kumar Roy (2014). Multi-objective geometric programming and its application in gravel box problem. Journal of global research in computer science volume 5. no.7, july 2014. http://www.jgrcs.info

[19] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[20] Anoop K. Dhingra (1992). Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[21] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).

[22] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[23] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[24] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[25] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012. Retrieved on September 14 2012 from Google search.

[26] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[27] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.
[28] Y. Y.Haimes, L. S. Lasdon, D. A. Wismer (1971). On a bicriterion formulation of the problems of of integrated system identification and system optimization. Ieee Transactions on Systems, Man, and Cybernetics. 1971; 1(3); 296-297.
[29] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[30] David M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-Hill Book Company, 1972.

[31] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

[32] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry

[33] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[34] Frederick S. Hillier, Gerald J. Liebermann (1990). Introduction to Mathematical Programming. McGraw-Hill Publishing Company, New York.

[35] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[36] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout. Les Cahiers du GERAD. Retrieved from http://www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[37] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. Retrieved from http://www.optimization-online.org./DB_HTML/2012/04/3432.html

[38] C. L. Hwang, Hoon Byung Lee, F. A. Tillman, Chang Hoon Lie (1984). Nonlinear integer goal programming applied to optimal system reliability. IEEE Transactions on Reliability, Vol. R-33, No. 5, December 1984.

[39] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.

[40] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.

[41] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).
https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.

[42] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[43] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[44] Hoon Byung Lee (1978). Integer programming and nonlinear integer goal programming applied to system reliability problems. A
Master’s Thesis, Master of Science, Department of Industrial Engineering, Kansas State University, Manhattan, Kansas, 1978.

[45] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.

[46] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[47] Rein Luus (1975). Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[48] Milos Madic, Miroslav Radovanovic (2014). Optimization of machining processes using pattern search algorithm.
International Journal of Industrial Engineering Computations 5 (2014) 223-234. Homepage: http://www.GrowingScience.com/ijiec

[49] F. Masedu, M Angelozzi (2008). Modelling optimum fraction assignment in the 4X100 m relay race by integer linear programming. Italian Journal of Sports Sciences, Anno 13, No. 1, 2008, pp. 74-77.

[50] MathWorks, Mixed Integer Optimization. https://www.mathworks.com/help/gads;mixed-integer-optimization.html

[51] Kaisa Miettinen, Petrie Eskelinen, Francisco Ruiz, Mariano Luque (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research 206 (2010) 426-434.

[52] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering
and System Safety 152 (2016) 213-227.

[53] Mohamed Arezki Mellal, Edward J. Williams (2016). Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopla heuristic. Journal of Intelligent Manufacturing (2016) 27 (5): 927-942.

[54] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[55] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[56] A. Moradi, A. M. Nafchi, A. Ghanbarzadeh (2015). Multi-objective optimization of truss structures using the bee algorithm. (One can read this via Goodle search.)

[57] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[58] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[59] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[60] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[61] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[62] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP). https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[63] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[64] Ciara Pike-Burke. Multi-Objective Optimization. https://www.lancaster.ac.uk/pg/pikeburc/report1.pdf.

[65]  Y.S. Raghav, I. Ali, A, Bari (2014)  Multi-objective nonlinear programming approach in multivariate stratified sample surveys in case of non-response, Journal of Statistical Computation and Simulation, 84, pp.22-36.                                                                                                                         

[66] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.

[67] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[68] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.

[69] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[70] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[71] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.

[72] Isaac Siwale. A Note on Multi-Objective Mathematical Problems. https://www.aptech.com/wp-content/uploads/2012/09/MultObjMath.pdf

[73] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.

[74] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[75] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. journal of computational design and engineering 5 (2018) 104-119.

[76] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[77] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[78] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[79] Zhongkai Xu, Way Kuo, Hsin-Hui Lin (1990). Optimization Limits in Improving System Reliability. IEEE Transactions on Reliability, Vol. 39, No. 1, 1990 April, pp. 51-60.

Thursday, December 5, 2019

Solving Another Multi-Objective Nonlinear Mixed-Integer Preemptive Goal Programming Problem




Jsun Yui Wong

The computer program listed below seeks to solve the following nonlinear integer goal programming problem from Lee [44, p. 70 and p. 77, Example 3-3]:

Minimize

[  (X(10)+X(11)+X(12)), (X(9)) ] 

subject to

X(1) ^ 2 + 2 * X(2) ^ 2 + 3 * X(3) ^ 2 + 4 * X(4) ^ 2 + 2 * X(5) ^ 2 + X(6)-X(10)=110

7 * (X(1) + EXP(X(1) / 4)) + 7 * (X(2) + EXP(X(2) / 4)) + 5 * (X(3) + EXP(X(3) / 4)) + 9 * (X(4) + EXP(X(4) / 4)) + 4 * (X(5) + EXP(X(5) / 4)) + X(7)-X(11)=175

7 * (X(1) * EXP(X(1) / 4)) + 8 * (X(2) * EXP(X(2) / 4)) + 8 * (X(3) * EXP(X(3) / 4)) + 6 * (X(4) * EXP(X(4) / 4)) + 9 * (X(5) * EXP(X(5) / 4)) + X(8)-X(12)=200

(1 – (1 – .80) ^ X(1)) * (1 – (1 – .85) ^ X(2)) * (1 – (1 – .90) ^ X(3)) * (1 – (1 – .65) ^ X(4)) * (1 – (1 – .75) ^ X(5)) + X(9)-X(13)=1 

where X(1) through X(5) are positive general integer variables and X(6) through X(13) are >=0.

The following computer program uses the streamlined procedure of Hillier and Lieberman [34, pp. 289-291] for multi-objective preemptive goal programming problems.  See line  458, which is  458 P = -10 ^ 15 * (X(10) + X(11) + X(12)) - X(9).


0 DEFDBL A-Z
1 DEFINT K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J44(2002), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(22), CC(20), RR(20), WW(20), AL(50), SW(50), SV(50), C2(22), C3(22), C4(22), C5(22)

81 FOR JJJJ = -32000 TO 32000

    85 RANDOMIZE JJJJ

    86 M = -3E+50

    92 A(1) = FIX(RND * 9)

    93 A(2) = FIX(RND * 9)
    94 A(3) = FIX(RND * 9)

    96 A(4) = FIX(RND * 9)
    97 A(5) = FIX(RND * 9)

    111 FOR J44 = 6 TO 13

        114 A(J44) = (RND * 50)

    117 NEXT J44

    128 FOR I = 1 TO 500000

        129 FOR KKQQ = 1 TO 13
            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        151 FOR IPP = 1 TO FIX(1 + RND * 5)

            153 J = 1 + FIX(RND * 13)
            154 IF J > 5 THEN GOTO 156 ELSE GOTO 162
            155 REM GOTO 162

            156 r = (1 - RND * 2) * A(J)

            158 X(J) = A(J) + (RND ^ (RND * 15)) * r

            161 GOTO 169

            162 IF RND < .5 THEN X(J) = A(J) - INT(RND * 4) ELSE X(J) = A(J) + INT(RND * 4)
            164 REM IF A(J) = 0 THEN X(J) = 1 ELSE X(J) = 0

        169 NEXT IPP

        172 X(1) = INT(X(1))
        174 X(2) = INT(X(2))
        176 X(3) = INT(X(3))
        178 X(4) = INT(X(4))
        179 X(5) = INT(X(5))
        188 IF X(1) < 1 THEN 1670

        189 IF X(2) < 1 THEN 1670
        190 IF X(3) < 1 THEN 1670
        192 IF X(4) < 1 THEN 1670
        194 IF X(5) < 1 THEN 1670

        215 FOR J44 = 6 TO 13

            216 IF X(J44) < 0 THEN 1670
        219 NEXT J44

        311 X(10) = -110 + X(1) ^ 2 + 2 * X(2) ^ 2 + 3 * X(3) ^ 2 + 4 * X(4) ^ 2 + 2 * X(5) ^ 2 + X(6)
        315 X(11) = -175 + 7 * (X(1) + EXP(X(1) / 4)) + 7 * (X(2) + EXP(X(2) / 4)) + 5 * (X(3) + EXP(X(3) / 4)) + 9 * (X(4) + EXP(X(4) / 4)) + 4 * (X(5) + EXP(X(5) / 4)) + X(7)

        319 X(12) = -200 + 7 * (X(1) * EXP(X(1) / 4)) + 8 * (X(2) * EXP(X(2) / 4)) + 8 * (X(3) * EXP(X(3) / 4)) + 6 * (X(4) * EXP(X(4) / 4)) + 9 * (X(5) * EXP(X(5) / 4)) + X(8)

        322 X(13) = -1 + (1 - (1 - .80) ^ X(1)) * (1 - (1 - .85) ^ X(2)) * (1 - (1 - .90) ^ X(3)) * (1 - (1 - .65) ^ X(4)) * (1 - (1 - .75) ^ X(5)) + X(9)
        326 FOR J44 = 1 TO 13

            328 IF X(J44) < 0 THEN 1670

        330 NEXT J44


        458 P = -10 ^ 15 * (X(10) + X(11) + X(12)) - X(9)


        1111 IF P <= M THEN 1670

        1450 M = P

        1454 FOR KLX = 1 TO 13
            1455 A(KLX) = X(KLX)
        1456 NEXT KLX


        1557 GOTO 128
    1670 NEXT I

    1889 REM IF M < -109900 THEN 1999
   
    1933 PRINT A(1), A(2), A(3), A(4), A(5)

    1936 PRINT A(6), A(7), A(8), A(9)

    1946 PRINT A(10), A(11), A(12), A(13), M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with QB64v1000-win [77]. The best candidate solution through JJJJ= -31949 is shown below:

.
.
.

3        2        2        3        3
27           28.87534441934497        7.518918241159362
.0955327034546875       
0        0        0        3.089976191583688D-18
-.0955327034546875      -31949
.
.
.


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [77], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31949 was 2 minutes, not including the time for “Creating .EXE file.”  One can compare the computational results above with those in Lee [44, p. 77, Example 3-3].

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.


[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[6] Miguel F. Anjos (2012), FLPLIB–Facility Layout Database. Retrieved on September 25 2012 from http://www.gerad.ca/files/Sites/Anjos/indexFR.html

[8] Ritu Arora, S. R. Arora (2014). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[9] Natahia Boland, Hadi Charkhgard, Martin Savelsbergh (2019). Preprocessing and cut generation techniques for multi-objective binary programming. European Journal of Operational Rearch 274 (2019) 858-875.

[10] Borndorfer, Prof. Dr. Ralf. Solving Multi-Objective Integer Programs. http://www.zib.de/projects/solving-multi-objective-integer-programs

[11] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.

[12] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.

[13] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[14] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[15] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[16] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[17] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[18] Pintu Das, tapan kumar Roy (2014). Multi-objective geometric programming and its application in gravel box problem. Journal of global research in computer science volume 5. no.7, july 2014. http://www.jgrcs.info

[19] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[20] Anoop K. Dhingra (1992). Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[21] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).

[22] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[23] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[24] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[25] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012. Retrieved on September 14 2012 from Google search.

[26] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[27] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.
[28] Y. Y.Haimes, L. S. Lasdon, D. A. Wismer (1971). On a bicriterion formulation of the problems of of integrated system identification and system optimization. Ieee Transactions on Systems, Man, and Cybernetics. 1971; 1(3); 296-297.
[29] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[30] David M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-Hill Book Company, 1972.

[31] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

[32] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry

[33] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[34] Frederick S. Hillier, Gerald J. Liebermann (1990). Introduction to Mathematical Programming. McGraw-Hill Publishing Company, New York.

[35] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[36] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout. Les Cahiers du GERAD. Retrieved from http://www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[37] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. Retrieved from http://www.optimization-online.org./DB_HTML/2012/04/3432.html

[38] C. L. Hwang, Hoon Byung Lee, F. A. Tillman, Chang Hoon Lie (1984). Nonlinear integer goal programming applied to optimal system reliability. IEEE Transactions on Reliability, Vol. R-33, No. 5, December 1984.

[39] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.

[40] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.

[41] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).
https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.

[42] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[43] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[44] Hoon Byung Lee (1978). Integer programming and nonlinear integer goal programming applied to system reliability problems. A Master’s Thesis, Master of Science, Department of Industrial Engineering, Kansas State University, Manhattan, Kansas, 1978.

[45] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.

[46] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[47] Rein Luus (1975). Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[48] Milos Madic, Miroslav Radovanovic (2014). Optimization of machining processes using pattern search algorithm.
International Journal of Industrial Engineering Computations 5 (2014) 223-234. Homepage: http://www.GrowingScience.com/ijiec

[49] F. Masedu, M Angelozzi (2008). Modelling optimum fraction assignment in the 4X100 m relay race by integer linear programming. Italian Journal of Sports Sciences, Anno 13, No. 1, 2008, pp. 74-77.

[50] MathWorks, Mixed Integer Optimization. https://www.mathworks.com/help/gads;mixed-integer-optimization.html

[51] Kaisa Miettinen, Petrie Eskelinen, Francisco Ruiz, Mariano Luque (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research 206 (2010) 426-434.

[52] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering
and System Safety 152 (2016) 213-227.

[53] Mohamed Arezki Mellal, Edward J. Williams (2016). Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopla heuristic. Journal of Intelligent Manufacturing (2016) 27 (5): 927-942.

[54] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[55] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[56] A. Moradi, A. M. Nafchi, A. Ghanbarzadeh (2015). Multi-objective optimization of truss structures using the bee algorithm. (One can read this via Goodle search.)

[57] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[58] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[59] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[60] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[61] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[62] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP). https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[63] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[64] Ciara Pike-Burke. Multi-Objective Optimization. https://www.lancaster.ac.uk/pg/pikeburc/report1.pdf.

[65] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.

[66] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[67] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.

[68] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[69] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[70] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.

[71] Isaac Siwale. A Note on Multi-Objective Mathematical Problems. https://www.aptech.com/wp-content/uploads/2012/09/MultObjMath.pdf

[72] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.

[73] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[74] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. journal of computational design and engineering 5 (2018) 104-119.

[75] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[76] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[77] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[78] Zhongkai Xu, Way Kuo, Hsin-Hui Lin (1990). Optimization Limits in Improving System Reliability. IEEE Transactions on Reliability, Vol. 39, No. 1, 1990 April, pp. 51-60.

Thursday, November 21, 2019

Hillier and Lieberman's Streamlined Procedure for Solving Multi-Objective Mixed-Integer Nonlinear/Linear Preemptive Goal Programming Problems




Jsun Yui Wong

1.  A Problem from Markland [62]   

The first computer program listed below seeks to solve the immediately following problem from Markland [62, p. 283, Problem 4] with the streamlined procedure of Hillier and Lieberman [42, pp. 289-291]:
   
Minimize     

 P1* X(10) +P2 * X(6) +P3*X(7) +P4*X(9) +P5* X(8)

where P1>>P2>>P3>>P4>>P5

subject to

         2.00 * X(1) + .1 * X(2) + 1.1 * X(3) + .08 * X(4) + .75 * X(5) <= 25

         225 * X(1) + 200 * X(2) + 175 * X(3) + 150 * X(4) + 400 * X(5) <= 10000

        .15 * X(1) + .25 * X(2) + .15 * X(3) + .05 * X(4) + .08 * X(5) >= 9.50

   X(1) +    X(6) = 100
   X(2)  +      X(7) = 100

   X(3)     +    X(8) = 100

   X(4)    +  X(9) = 100

    X(5)   +  X(10) = 100

All variables are nonnegative.

The formulation above is from Markland [62, pp. 809-810].

0 DEFDBL A-Z
1 REM        DEFINT X, A
2 DIM N(99), A(45222), X(45012), D(111), P(111), PS(33), J44(45202), J(45211), AA(99), STIO(45303)
81 FOR JJJJ = -32000 TO 32000

    85 RANDOMIZE JJJJ
    87 M = -4E+250
    120 FOR J44 = 1 TO 10

        121 A(J44) = FIX(RND * 40)

    123 NEXT J44

    128 FOR I = 0 TO FIX(RND * 90000)


        129 FOR KKQQ = 1 TO 10

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ

        135 FOR IPP = 1 TO FIX(1 + RND * 3.3)

            143 j = 1 + FIX(RND * 10)

            144 IF RND < .5 THEN GOTO 156 ELSE GOTO 162 

            145 REM GOTO 162
            154 REM     IF j > 3.5 THEN GOTO 162 ELSE GOTO 156

            156 r = (1 - RND * 2) * A(j)
            158 X(j) = A(j) + (RND ^ (RND * 15)) * r

            161 GOTO 169

            162 IF RND < .5 THEN X(j) = A(j) - FIX(1 + RND * 5.3) ELSE X(j) = A(j) + FIX(1 + RND * 5.3)

        169 NEXT IPP
       

        221 FOR J44 = 1 TO 12

            231 REM     X(J44) = INT(X(J44))


            232 IF X(J44) < 0 THEN 1670

        234 NEXT J44


        250 X(6) = 100 - X(1)
        252 X(7) = 100 - X(2)

        253 X(8) = 100 - X(3)

        254 X(9) = 100 - X(4)

        255 X(10) = 100 - X(5)

        257 FOR J44 = 1 TO 10
            258 REM      X(J44) = INT(X(J44))

            259 IF X(J44) < 0 THEN 1670
        260 NEXT J44


        263 IF 2.00 * X(1) + .1 * X(2) + 1.1 * X(3) + .08 * X(4) + .75 * X(5) > 25 THEN 1670

        265 IF 225 * X(1) + 200 * X(2) + 175 * X(3) + 150 * X(4) + 400 * X(5) > 10000 THEN 1670
        266 IF .15 * X(1) + .25 * X(2) + .15 * X(3) + .05 * X(4) + .08 * X(5) < 9.50 THEN 1670

        1415 P = -10 ^ 80 * (X(10)) - 10 ^ 60 * X(6) - 10 ^ 40 * (X(7)) - 10 ^ 20 * X(9) - X(8)
     

        1417 IF P <= M THEN 1670
        1420 M = P


        1442 FOR KLX = 1 TO 10


            1455 A(KLX) = X(KLX)
        1456 NEXT KLX

        1557 GOTO 128
    1670 NEXT I
    1672 IF M < -4D+200 THEN 1999

    1931 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with QB64v1000-win [102]. The complete output of a single run through JJJJ=-28987 is shown below:

.
.
.
.0059093962162189         35.71146723582667       5.46674869668203D-03
0                                    7.138293643361265       99.99409060378378
64.28853276417333         99.99453325130332       100
92.86170635663873        -9.286170635663874D+81      -28987                               
.
.
.


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -28987 was 5 minutes, not including the time for “Creating .EXE file.”   One can compare the computational results above with those in Markland [62, pp. 809-810].         

Remark 3 and remark 4 on page 198 of Winston and Venkataramanan are noteworthy [103].


2. An Integer Version of the Same Problem
 
One notes the following line 144, which is 144 REM IF RND < .5 THEN GOTO 156 ELSE GOTO 162.

0 DEFDBL A-Z
1 REM        DEFINT X, A
2 DIM N(99), A(45222), X(45012), D(111), P(111), PS(33), J44(45202), J(45211), AA(99), STIO(45303)
81 FOR JJJJ = -32000 TO 32000

    85 RANDOMIZE JJJJ
    87 M = -4E+250
    120 FOR J44 = 1 TO 10

        121 A(J44) = FIX(RND * 40)


    123 NEXT J44

    128 FOR I = 0 TO FIX(RND * 90000)


        129 FOR KKQQ = 1 TO 10

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ

        135 FOR IPP = 1 TO FIX(1 + RND * 3.3)

            143 j = 1 + FIX(RND * 10)

            144 REM IF RND < .5 THEN GOTO 156 ELSE GOTO 162


            145 GOTO 162
            154 REM     IF j > 3.5 THEN GOTO 162 ELSE GOTO 156

            156 r = (1 - RND * 2) * A(j)
            158 X(j) = A(j) + (RND ^ (RND * 15)) * r

            161 GOTO 169

            162 IF RND < .5 THEN X(j) = A(j) - FIX(1 + RND * 5.3) ELSE X(j) = A(j) + FIX(1 + RND * 5.3)


        169 NEXT IPP
        170 REM   GOTO 221

        171 REM X(1) = 100
        173 REM
        177 REM
        178 REM  X(2) = 140

        179 REM  IF X(3) > 20 THEN 1670

        221 FOR J44 = 1 TO 12

            231 REM     X(J44) = INT(X(J44))


            232 IF X(J44) < 0 THEN 1670

        234 NEXT J44


        250 X(6) = 100 - X(1)
        252 X(7) = 100 - X(2)

        253 X(8) = 100 - X(3)

        254 X(9) = 100 - X(4)

        255 X(10) = 100 - X(5)

        257 FOR J44 = 1 TO 10
            258 REM      X(J44) = INT(X(J44))

            259 IF X(J44) < 0 THEN 1670
        260 NEXT J44


        263 IF 2.00 * X(1) + .1 * X(2) + 1.1 * X(3) + .08 * X(4) + .75 * X(5) > 25 THEN 1670

        265 IF 225 * X(1) + 200 * X(2) + 175 * X(3) + 150 * X(4) + 400 * X(5) > 10000 THEN 1670
        266 IF .15 * X(1) + .25 * X(2) + .15 * X(3) + .05 * X(4) + .08 * X(5) < 9.50 THEN 1670

        272 REM  IF 100 * X(1) + 60 * X(2) > 600 THEN 1670

        1411 REM   P = -10 ^ 30 * X(3) - 10 ^ 30 * X(6) - 10 ^ 15 * X(7) - 10 ^ 15 * X(9) - X(11)
        1413 REM     P = -10 ^ 30 * X(4) - 10 ^ 20 * X(8) - 10 ^ 10 * X(5) - X(9)

        1415 P = -10 ^ 80 * (X(10)) - 10 ^ 60 * X(6) - 10 ^ 40 * (X(7)) - 10 ^ 20 * X(9) - X(8)
        1416 REM P = -10 ^ 30 * X(4) - 10 ^ 20 * (X(6)) - 10 ^ 10 * (X(9)) - X(11)


        1417 IF P <= M THEN 1670
        1420 M = P


        1442 FOR KLX = 1 TO 10


            1455 A(KLX) = X(KLX)
        1456 NEXT KLX

        1557 GOTO 128
    1670 NEXT I
    1672 IF M < -4D+200 THEN 1999

    1931 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with QB64v1000-win [102]. The complete output of a single run through JJJJ=-29408 is shown below:

.
.
.
0  27  16  1  4
100  73  84  99  96
-9.6D+81    -29556

0  36  0  0  7
100  64  100  100  93
-9.3D+81    -29408
.
.
.


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -29408 was 5 minutes, not including the time for “Creating .EXE file.”   One can compare the computational results above with those in Markland [62, pp. 809-810].         
     
Remark 3 and remark 4 on page 198 of Winston and Venkataramanan are noteworthy [103].

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Irfan Ali, Yashpal Singh Raghav, Abdul Bari (2013).  Compromise allocation in multivariate stratified surveys with stochastic quadratic cost function, Journal of Statistical Computation and Simulation 2013,   Vol. 83,  No. 5, pp. 962-976.

[2]  Irfan Ali, Yashpal Singh Raghav, Abdul Bari (2011).  Integer goal programming approach for finding a compromise allocation of repairable components, International Journal of Engineering, Science and Technology 2011, Vol. 3, No. 6, pp. 184-195.  https://www.researchgate.net> publication > 260348481

[3] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[4] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[5] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[6] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[7] Oscar Augusto, Bennis Fouad,  Stephane Caro (2012).  A new method for decision making in multi-objective optimization problems.  Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[8] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[9] Miguel F. Anjos (2012), FLPLIB--Facility Layout Database. Retrieved on September 25 2012 from www.gerad.ca/files/Sites/Anjos/indexFR.html

[10] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[11] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem:  OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[12] Adil Baykasoglu (2005), Preemptive goal programming using simulated annealing, Engineering Optimization, 37:1, 49-63.

[13] Adil Baykasoglu, S. Owen, N. Gindy (1999), Solution of goal programming models using a basic taboo search algorithm, Journal of the Operational Research Society (1999) 50, 960-973.

[14]  H. Bernau (1990 ).  Active constraint strategies in optimization. Geographical data inversion methods and applications.  pp. 15-31.

[15]  Victor Blanco,  Justo Puerto (2011).  Some algebraic methods for solving multiobjective polynomial integer programs, Journal of Symbolic Computation, 46 (2011), pp. 511-533.

[16] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.

[17] Regina S. Burachik, C. Yalcin Kaya, M. Mustafa Rizvi (March 19, 2019),  Algorithms for Generating Pareto Fronts of Multi-objective Integer and Mixed-Integer Programming Problems, arXiv: 1903.07041v1 [math.OC] 17 Mar 2019.

[18] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. - Feb., 1966), pp. 52-58.

[19] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[20] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[21] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[22] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[23] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[24]  Pintu Das, Tapan Kumar Roy (2014).  Multi-objective geometric programming and its application in gravel box problem.  Journal of global research in computer science volume 5. no.7, July 2014.  www.jgrcs.info

[25] Kalyanmoy Deb, Amrit Pratap, Subrajyoti Moitra (2000).  Mechanical component design for  multi objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Probl.Solv. Nat. PPSN VI Conference, Paris, France, pp. 859-868 (2000).  (Please see pp. 1-10 in Technical Report No. 200002 via Google search.)

[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[27] Anoop K. Dhingra (1992). Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[28]  Wassila Drici, Mustapha Moulai (2019):  An exact method for solving multi-objective integer indefinite quadratic programs, Optimization Methods and Software.

[29] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).

[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[34] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012. Retrieved on September 14 2012 from Google search.

[35]  Shazia Ghufran, Saman Khowaja, M. J. Ahsan (2014).  Compromise allocation in multiobjective stratified sample surveys under two stage randomized response model, Optim Lett (2014) 8:343-357.

[36] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[37]  Neha Gupta, Irfan Ali, Abdul Bari (2013).  Fuzzy goal programming approach in selective maintenance reliability model, Pakistan Journal of Statistics and Operation Research, Volume IX, Number 3, 2013, pp. 321-331.  https://www.researchgate.net> publication > 260280875_Fuzzy_Goal_Programming...

[38]  Neha Gupta, Irfan Ali, Abdul Bari (2013).  An optimal chance constraint multivariate stratified sampling design using auxiliary infotmation.  Journal of Mathematical Modelling and Algorithms, January 2013.

[39] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

[40] M. Hashish, M. P. duPlessis (1979). Prediction equations relating high velocity jet cutting performance to stand-off-distance and multipasses. Transactions of ASME: Journal of Engineering for Industry 101 (1979) 311-318.

[41]  Ibrahim M. Hezam, Osama Abdel Raouf, Mohey M. Hadhoud (September 2013).  A new compound swarm intelligence algorithm for for solving global optimization problems.  International Journal of Computers and Technology, Vol. 10, No. 9, 2013.

[42] Frederick S. Hillier, Gerald J. Lieberman (1990).  Introduction to Mathematical Programming.  McGraw-Hill Publishing Company, New York.

[43] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[44] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout. Les Cahiers du GERAD. Retrieved from www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[45]  Sana  Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015).  An optimum multivariate stratified sampling design.  Research Journal of Mayhematical and Statistical Sciences, vol. 3(1),10-14, January (2015).

[46] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. Retrieved from www.optimization-online.org./DB_HTML/2012/04/3432.html

[47] Golam Reza Jahanshahloo, Farhad Hosseinzadeh, Nagi Shoja, Ghasem Tohidi (2003)  A method for solvong 0-1 multiple objective liner programming problem using DEA. Journal of the Operations Research Society of Japan (2003), 46 (2): 189-202.  www.orsj.or.jp/~archive/pdf/e_mag/Vol.46_02_189.pdf

[48] Ekta  Jain, Kalpana Dahiya, Vanita  Verma (2018):  Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[49] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.

[50] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey--Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.

[51] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).
https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.

[52] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem:  OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.

[53]  M. G. M. Khan, E. A. Khan, M. J. Ahsan (2003).  An optimal multivariate stratified sampling design using dynamic programming.  Australian and New Zealand Journal of  Statistics, vol. 45, no. 1, 2003, pp. 107-113.

[54]  M. G. M. Khan, T. Maiti, M. J. Ahsan (2010).  An optimal multivariate stratified sampling design using auxiliary information:  an integer solution using goal programming approach.  Journal of Official Statistics, vol. 26, no. 4, 2010, pp. 695-708.

[55] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[56] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[57]  F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs.  European Journal of Operational Research 126 (2000) 51-68.

[58] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.

[59] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[60] Rein Luus (1975). Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[61] Milos Madic, Miroslav Radovanovic (2014). Optimization of machining processes using pattern search algorithm.
International Journal of Industrial Engineering Computations 5 (2014) 223-234. Homepage: www.GrowingScience.com/ijiec

[62]  Robert E. Markland (1989).  Topics in Management Science, Third Edition, published by Wiley (1989).                       

[63]  Robert E. Markland, James R. Sweigart (1987).  Quantitative Methods: Applications to Managerial Decision Making, published by Wiley (1987).

[64] F. Masedu, M Angelozzi (2008). Modelling optimum fraction assignment in the 4X100 m relay race by integer linear programming. Italian Journal of Sports Sciences, Anno 13, No. 1, 2008, pp. 74-77.

[65] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering
and System Safety 152 (2016) 213-227.

[66] Mohamed Arezki Mellal, Edward J. Williams (2016). Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopla heuristic. Journal of Intelligent Manufacturing (2016) 27 (5): 927-942.

[67] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[68] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[69]  A. Moradi, A. M. Nafchi, A. Ghanbarzadeh (2015).  Multi-objective optimization of truss structures using the bee algorithm.  (One can read this via Goodle search.)

[70] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[71]  Subhash C. Narula, H. Roland Weistroffer (1989).  A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[72] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[73]  A. K. Ojha, K. K. Biswal (2010).  Multi-objective geometric programming problem with weighted mean method.  (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp.  82-86, 2010.

[74] Rashmi Ranjan Ota, jayanta kumar dASH, A. K. Ojha (2014). A hybrid optimization techniques for solving non-linear multi-objective optimization problem.  amo-advanced modelling and optimization, volume 16,number 1, 2014.

[75] Rashmi Ranjan Ota, A. K. Ojha (2015). A comparative study on optimization techniques for solving multi-objective geometric programming problems. Applied mathematical sciences, vol. 9, 2015, no. 22, 1077-1085. http://sites.google.com/site/ijcsis/

[76] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system.  OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.
 
[77] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP). https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[78] S. Pant, D. Anand, A. Kishor, S. B. Singh (2015).  A particle swarm algorithm for optimization of complex system reliability, International Journal of Performability Engineering, Volume 11, Number 1, Jan.  2015, Pp. 33-42.
 
[79] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[80]  Ciara Pike-Burke.  Multi-Objective Optimization.  https://www.lancaster.ac.uk/pg/pikeburc/report1.pdf.

[81]  Yashpal Singh Raghav,  Irfan Ali, Abdul Bari (2014)  Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation ans Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370. 

[82] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.

[83] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[84] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015).  Water cycle algorithm for solvinfg constrained multi-objective optimization problems.  Applied Soft Computing 27 (2015) 279-298.

[85]  Shafiullah, Irfan Ali, Abdul Bari (2015).  Fuzzy  geometric programming approach in multi-objective multivariate stratified sample surveys in presence of non-respnse, International Journal of Operations Research, Vol. 12, No. 2, pp.  021-035 (2015).

[86] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[87] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[88] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. - Oct., 1969), pp. 812-826.

[89] Isaac Siwale.  A Note on Multi-Objective Mathematical Problems. https://www.aptech.com/wp-content/uploads/2012/09/MultObjMath.pdf

[90] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes' Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.

[91] Sonja Surjanovic, Derek Bingham (August 2017).  Virtual Library of Simulation Experiments: Test Functions and Datasets--Optimization Test Problems (Sum of Different Powers Function).  sfu.ca/~ssurjano/index.html.  Or just google sum of different powers function.

[92] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[93] Mohamed Tawhid, Vimal  Savsani (2018).  Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems.  journal of computational design and engineering 5 (2018) 104-119.


[94]  Bernard J.  Taylor, Constance H. Mclaren, Bruce J. Mclaren    (1982).  Introduction to management science, study guide.  Wm. C. Brown Company Publishers, Dubuque, Iowa.

[95] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[96]  Rahul Varshney, Srikant Gupta,  Irfan  Ali (2017).  An optimum multivariate-multiobjective stratified samplinr design:  fuzzy programming approach.  Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017

[97]  Rahul Varshney,  Mradula (2019 May 25).  Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13,  pp.2454-2467.

[98]  Rahul Varshney, Najmussehar, M. J. Ahsan (2012).  An optimum multivariate stratified double sampling design in presence of non-response, Optimization Letters (2012) 6: pp. 993-1008.

[99]  Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015).  Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.

[100]  V. Verma, H. C. Bakhshi, M. C. Puri (1990)  Ranking in integer linear fractional programming problems, ZOR - Methods and Models of Operations Research (1990)
34:325-334.

[101] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Journal of Chemical Engineering 28 (1):32-40 January 2011.

[102] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[103]  Wayne L. Winston, Munirpallam Venkataramanan (2003).  Introduction to Mathematical Programming, Fourth Edition, Thomson Learning, USA.

[104] Zhongkai Xu, Way Kuo, Hsin-Hui Lin (1990). Optimization Limits in Improving System Reliability. IEEE Transactions on Reliability, Vol. 39, No. 1, 1990 April, pp. 51-60.