Thursday, March 16, 2023

A Computer Program for Alkylation Process Optimization

 


A Computer Program for Alkylation Process Optimization     

Jsun Yui Wong

Similar to the computer program of the preceding paper, the computer program listed below aims to solve the nonlinear programming formulation on page 42 of Bracken and McCormick [15, p. 42], which is briefly summarized as follows:   

Maximize 

          ( c1 * X(4) * X(7) - c2 * X(1) - c3 * X(2) - c4 * X(3) - c5 * X(5)  )

subject to  

 X(j) LB <=  X(j)  <=  X(j) UB,   j=1, ...,  10,      


 (X(1) * (1.12 + .13167 * X(8) - .00667 * X(8) ^ 2)) - (99 / 100) * X(4) >= 0 


    -(X(1) * (1.12 + .13167 * X(8) - .00667 * X(8) ^ 2)) + (100 / 99) * X(4) >= 0 


         (86.35 + 1.098 * X(8) - .038 * X(8) ^ 2 + .325 * (X(6) - 89)) - (99 / 100) * X(7) >= 0 


         -(86.35 + 1.098 * X(8) - .038 * X(8) ^ 2 + .325 * (X(6) - 89)) + (100 / 99) * X(7) >= 0 


        (35.82 - .222 * X(10)) - (9 / 10) * X(9) >= 0 


         -(35.82 - .222 * X(10)) + (10 / 9) * X(9) >= 0 


        (-133 + 3 * X(7)) - (99 / 100) * X(10) >= 0 


        -(-133 + 3 * X(7)) + (100 / 99) * X(10) >= 0 


         1.22 * X(4)   -X(1)   - X(5)  = 0


         (98000 * X(3)) / (X(4) * X(9) + 1000 * X(3))  - X(6) = 0; this is correct, according to p. 40 of Reference 15


         ( (X(2) + X(5)) / X(1) )   - X(8) = 0. 


The "final element" on p. 42 of Bracken an d McCormick [15] and four of the starting values (1745, 12000, 3048, and 1974) of Bracken and McCormick [15, p. 43, Table 4.2] help reduce the starting ranges of line 91, line 92, line 94, and line 95 below, which involve the four longest ranges, respectively.


0 REM DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000


    89 RANDOMIZE JJJJ

    90 M = -3D+30

    91 A(1) = 1700 + RND * 50


    92 A(2) = 11900 + RND * 200


    93 A(3) = 0 + RND * 120


    94 A(4) = 3000 + RND * 50


    95 A(5) = 1900 + RND * 50


    96 A(6) = 85 + RND * 8


    97 A(7) = 90 + RND * 5


    98 A(8) = 3 + RND * 9


    99 A(9) = 1.2 + RND * 2.8


    100 A(10) = 145 + RND * 17


    128 FOR i = 1 TO 100000     


        129 FOR KKQQ = 1 TO 10


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 10)



            141 B = 1 + FIX(RND * 10)



            144 IF RND < .9999 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            165 GOTO 168


            167 REM   IF RND < .5 THEN X(B) = A(B) - FIX(RND * 2) ELSE X(B) = A(B) + FIX(RND * 2)


        168 NEXT IPP


        181 X(5) = -X(1) + 1.22 * X(4)


        184 X(8) = (X(2) + X(5)) / X(1)



        187 REM     X(6) = (98000 * X(3)) / (X(3) * X(9) + 1000 * X(3))


        197 X(6) = (98000 * X(3)) / (X(4) * X(9) + 1000 * X(3))


        210 IF (-133 + 3 * X(7)) - (99 / 100) * X(10) < 0 THEN 1670


        214 IF -(-133 + 3 * X(7)) + (100 / 99) * X(10) < 0 THEN 1670


        220 IF (35.82 - .222 * X(10)) - (9 / 10) * X(9) < 0 THEN 1670


        224 IF -(35.82 - .222 * X(10)) + (10 / 9) * X(9) < 0 THEN 1670


        230 IF (X(1) * (1.12 + .13167 * X(8) - .00667 * X(8) ^ 2)) - (99 / 100) * X(4) < 0 THEN 1670


        235 IF -(X(1) * (1.12 + .13167 * X(8) - .00667 * X(8) ^ 2)) + (100 / 99) * X(4) < 0 THEN 1670


        240 IF (86.35 + 1.098 * X(8) - .038 * X(8) ^ 2 + .325 * (X(6) - 89)) - (99 / 100) * X(7) < 0 THEN 1670


        245 IF -(86.35 + 1.098 * X(8) - .038 * X(8) ^ 2 + .325 * (X(6) - 89)) + (100 / 99) * X(7) < 0 THEN 1670


        324 IF X(1) > 2000 THEN 1670


        325 IF X(1) < 0 THEN 1670


        342 IF X(2) > 16000 THEN 1670


        345 IF X(2) < 0 THEN 1670


        351 IF X(3) > 120 THEN 1670


        352 IF X(3) < 0 THEN 1670



        353 IF X(4) > 5000 THEN 1670


        354 IF X(4) < 0 THEN 1670


        355 IF X(5) > 2000 THEN 1670


        356 IF X(5) < 0 THEN 1670



        361 IF X(6) > 93 THEN 1670


        362 IF X(6) < 85 THEN 1670


        363 IF X(7) > 95 THEN 1670


        364 IF X(7) < 90 THEN 1670


        365 IF X(8) > 12 THEN 1670


        366 IF X(8) < 3 THEN 1670



        367 IF X(9) > 4 THEN 1670


        368 IF X(9) < 1.2 THEN 1670


        369 IF X(10) > 162 THEN 1670


        370 IF X(10) < 145 THEN 1670


        468 PD1 = .063 * X(4) * X(7) - 5.04 * X(1) - .035 * X(2) - 10 * X(3) - 3.36 * X(5)


        469 P = PD1


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 10


            1455 A(KLX) = X(KLX)


        1459 NEXT KLX


    1670 NEXT i

    1777 IF M < 1765 THEN 1999


    1888 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [102].  Its complete output of one run through JJJJ=  -31834 is shown below:


1698.09   15711.85   54.65469   3031.221   2000

90.1657   94.99728   10.43046   1.566638   153.5229

1766.504   -31891


1698.208      15761.9595      54.46571      3031.318      2000

90.14706      95      10.45923      1.565209      153.5211

1767.145      -31834


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  By using the following computer system and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31834 was 55 seconds, counting from "Starting program...".   One can compare the computational results above with those in Bracken and McCormick [15, p. 44, Table 4.5] and in Babu and Angira [10, p. 997, Table 6].  

The computational results presented above were obtained from the following computer system:  

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz   2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.


Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.

[3] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[4] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[5] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[6] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[7] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[8] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[9] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[10]  B. V. Babu, Rakesh Angira (2006).  Modified differential evolution (MDE) for optimization of non-linear chemical processes.  Computers and Chemical Engineering 30 (2006) 989-1002.

[11] Hirak Basumatary (1 January 2019). Solve system of equations and inequalities with multiple solutions?

https://www.mathworks.com/matlabcentral/answers/437815-solve-system-of-equations-and-inequalities-with-multiple-solutions?_tid=prof_contriblnk

[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton--Approximate nonlinear equations by sequence of linear equations--lecture 6.  (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[14] F. Bazikar, M. Saraj (2018), MathLAB Journal, vol. 1 no. 3, 2018.

http://purkh.com/index.php/mathlab


[15] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.


[16] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.


[17] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.


[18] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values.

https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute_values#Numerical_ Example


[19] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.


[20] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.


[21] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.


[22] H. W. Corley, E. O. Dwobeng (2020). Relating optimization problems to systems of inequalities and equalities, American Journal of Operations Research, 2020, 10, 284-298. https://www.scirp.org/journal/ajor.


[23] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[24] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[25] Kalyanmoy Deb, Amrit Pratap, Subrajyoti Moitra (2000). Mechanical component design for multi objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Probl.Solv. Nat. PPSN VI Conference, Paris, France, pp. 859-868 (2000). (Please see pp. 1-10 in Technical Report No. 200002 via Google search.)


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.


[27] Wassila Drici, Mustapha Moulai (2019): An exact method for solving multi-objective integer indefinite quadratic programs, Optimization Methods and Software.


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values...

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8...

[37] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.

[38] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[39] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems, Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263

[40] C. H. Huang, H. Y. Kao. (2009).  An effective linear approximation method for geometric programming problems, IEEE Publications, 1743-1746.

[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).

[42] R. Israel, A Karush-Kuhn-Tucker Example

https://personal.math.ubc.ca/~israel/m340/kkk2.pdf

[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.


[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).

https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.


[48]   Ram Keval, Constrained Geometric Programming Problem.

[from Gooogle Search and Youtube].


[49] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.


[50] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.


[51] Han-Lin Li, Jung-Fa Tsai (2005).  Treating free variables in generalized geometric global optimization programs.  Journal of Global  Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012).   Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming.  European Journal of Operational Research 216 (2012) 17-25. 

[53]  Ming-Hua Lin,  Jung-Fa Tsai (2011).  Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443 


[54] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[55] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

  

[57]  Hao-Chun Lu (2012).   An efficient convexification method for solving generalized geometric problems.  Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455. 


[58]  Andreas Lundell, Tapio Westerlund, Convex underestimation strategies for signomial functions, Optimization Methods and Software 24 (4) 505-522, August 2009.


[59] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming

[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman.  Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[64] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.

[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017).  Comparison of algorithms for including equality constraints in signomial programming.  ACDL Technical Report TR-2017-1.  August 31 2017.  pp.1-23.  One can get a Google view of this report.

[68] Rashmi Ranjan Ota, jayanta kumar dASH, A. K. Ojha (2014). A hybrid optimization techniques for solving non-linear multi-objective optimization problem. amo-advanced modelling and optimization, volume 16,number 1, 2014.

[69] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.

[70] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[71] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.

[72] Yashpal Singh Raghav, Irfan Ali, Abdul Bari (2014) Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation and Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370.

[73] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf

[74] Singiresu S. Rao, Engineering Optimization, Fifth Edition, Wiley, New York, 2020.

[75] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[76] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).

[77] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[78] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.


[79] Shafiullah, Irfan Ali, Abdul Bari (2015). Fuzzy geometric programming approach in multi-objective multivariate stratified sample surveys in presence of non-respnse, International Journal of Operations Research, Vol. 12, No. 2, pp. 021-035 (2015).


[80] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.


[81] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.


[82] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.


[83] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.


[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm


[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. Journal of computational design and engineering 5 (2018) 104-119.


[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006).   An optimization approach for solving signomial discrete programming problems with free variables.  Computers and Chemical Engineering 30 (2006) 1256-1263.  

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).   On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) 10-19.  

[89] Jung-Fa Tsai, Ming-Hua Lin (2008).   Global optimization of signomial mixed-integer nonlinear programming problems with free variables.  Journal of Global Optimization (2008) 42:39-49.  


[90] Jung-Fa Tsai (2009).   Treatng free variables in generalized geometric programming problems.  Computers and Chemical Enginering 33 (2009) 239-243.  


[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020).  Global optimization for mixed-discrete structural design.  Symmetry 2020, 12, 1529

One can get a Google view of this article.  www.mdpi.com/journal/symmetry.


[92] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[93] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.


[94] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[95] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.


[96] Rahul Varshney, Najmussehar, M. J. Ahsan (2012). An optimum multivariate stratified double sampling design in presence of non-response, Optimization Letters (2012) 6: pp. 993-1008.


[97] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.


[98] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[99] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[100] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (101). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[101] Eric W. Weisstein, "Euler's Sum of Powers Conjecture." https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.


[102] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.


[103] Wayne L. Winston, (2004), Operations Research--Applications and Algorithms, Fourth Edition, Brooks/Cole--Thomson Learning, Belmont, California 94002.


[104] Helen Wu, (2015), Geometric Programming

https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming


[105] G. Xu, (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.


[106] James Yan.  Signomial programs with equality constraints: numerical solution and applications.  Ph. D. thesis. University of British Columbia, 1976. 

One can easily view this dissertation on Google.


Sunday, March 12, 2023

A Computer Program for Optimizing an Isothermal Continuous Stirred-Tank Reactor (CSTR)

 



A Computer Program for Optimizing an Isothermal Continuous Stirred-Tank Reactor (CSTR)     

Jsun Yui Wong

Similar to the computer program of the preceding paper, the computer program listed below aims to solve the nonlinear programming formulation on pages 994-995 of Babu and Angira [10], which is only very briefly summarized as follows:   

Maximize 

X(3),

where X(3) is

((k(1) * k(4) * 2.718281828 ^ (-k(5) * X(1)))) / (k(1) + k(2) + k(3) - k(4)) * (((1 - 2.718281828 ^ (-(k(4) - k(5)) * X(1))) / (k(4) - k(5))) - (((1 - 2.718281828 ^ (-(k(1) + k(2) + k(3) - k(5)) * X(1))) / (k(1) + k(2) + k(3) - k(5)))))

 subject to  

 0 <=  X(1)  <= 10,      

where X(1) here is t or reaction time (s) in Babu and Angira [10, p. 995],

 200 <= X(2) <= 2000,    

where X(2) here is T or reaction temperature (K) in Babu and Angira [10, p. 995],

(0, 200) <= X(1), X(2) <= (10, 2000). 

     

0 REM DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    89 RANDOMIZE JJJJ

    90 M = -3D+30


    105 C(1) = 1.02: C(2) = .93: C(3) = .386: C(4) = 3.28: C(5) = .084


    107 E(1) = 16000: E(2) = 14000: E(3) = 15000: E(4) = 10000: E(5) = 15000


    110 FOR J44 = 1 TO 1


        112 A(J44) = 0 + RND * 10


    114 NEXT J44



    115 FOR J44 = 2 TO 2


        116 A(J44) = 200 + RND * 1800


    117 NEXT J44


    128 FOR i = 1 TO 30000



        129 FOR KKQQ = 1 TO 6


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 5)



            141 B = 1 + FIX(RND * 6)



            144 IF RND < .999 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            165 GOTO 168


            167 REM    IF RND < .5 THEN X(B) = A(B) - FIX(RND * 10) ELSE X(B) = A(B) + FIX(RND * 10)


        168 NEXT IPP


        177 GOTO 321



        321 FOR J44 = 1 TO 1


            324 IF X(1) > 10 THEN 1670


            325 IF X(1) < 0 THEN 1670

        328 NEXT J44


        340 FOR J44 = 2 TO 2

            342 IF X(2) > 2000 THEN 1670


            345 IF X(2) < 200 THEN 1670



        348 NEXT J44



        411 FOR J44 = 1 TO 5


            413 k(J44) = C(J44) * EXP((-E(J44) / 1.9872) * ((1 / X(2)) - 1 / 658))


        415 NEXT J44


        441 X(3) = ((k(1) * k(4) * 2.718281828 ^ (-k(5) * X(1)))) / (k(1) + k(2) + k(3) - k(4)) * (((1 - 2.718281828 ^ (-(k(4) - k(5)) * X(1))) / (k(4) - k(5))) - (((1 - 2.718281828 ^ (-(k(1) + k(2) + k(3) - k(5)) * X(1))) / (k(1) + k(2) + k(3) - k(5)))))


        468 PD1 = X(3)


        469 P = PD1


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 6


            1455 A(KLX) = X(KLX)


        1459 NEXT KLX


    1670 NEXT i

    1777 REM   IF M < 0 THEN 1999


    1888 PRINT A(1), A(2), A(3), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [102].  Its complete output of one run through JJJJ=  -31997 is shown below:

 7.608695E-02      982.7841      .4230835       .4230835

-32000

 .074872      982.0062      .4230832       .4230832      -31999      

 7.634164E-02      982.352      .4230834       .4230834

-31998

 7.542216E-02      984.1509      .4230834       .4230834

-31997


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  By using the following computer system and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31997 was 2 seconds, counting from "Starting program...".  One can compare the computational results above with those in Babu and Angira [10, p. 995, Table 4].  

The computational results presented above were obtained from the following computer system:  

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz   2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.


Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.

[3] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[4] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[5] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[6] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[7] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[8] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[9] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[10]  B. V. Babu, Rakesh Angira (2006).  Modified differential evolution (MDE) for optimization of non-linear chemical processes.  Computers and Chemical Engineering 30 (2006) 989-1002.

[11] Hirak Basumatary (1 January 2019). Solve system of equations and inequalities with multiple solutions?

https://www.mathworks.com/matlabcentral/answers/437815-solve-system-of-equations-and-inequalities-with-multiple-solutions?_tid=prof_contriblnk

[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton--Approximate nonlinear equations by sequence of linear equations--lecture 6.  (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[14] F. Bazikar, M. Saraj (2018), MathLAB Journal, vol. 1 no. 3, 2018.

http://purkh.com/index.php/mathlab


[15] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.


[16] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.


[17] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.


[18] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values.

https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute_values#Numerical_ Example


[19] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.


[20] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.


[21] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.


[22] H. W. Corley, E. O. Dwobeng (2020). Relating optimization problems to systems of inequalities and equalities, American Journal of Operations Research, 2020, 10, 284-298. https://www.scirp.org/journal/ajor.


[23] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[24] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[25] Kalyanmoy Deb, Amrit Pratap, Subrajyoti Moitra (2000). Mechanical component design for multi objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Probl.Solv. Nat. PPSN VI Conference, Paris, France, pp. 859-868 (2000). (Please see pp. 1-10 in Technical Report No. 200002 via Google search.)


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.


[27] Wassila Drici, Mustapha Moulai (2019): An exact method for solving multi-objective integer indefinite quadratic programs, Optimization Methods and Software.


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values...

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8...

[37] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.

[38] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[39] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems, Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263

[40] C. H. Huang, H. Y. Kao. (2009).  An effective linear approximation method for geometric programming problems, IEEE Publications, 1743-1746.

[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).

[42] R. Israel, A Karush-Kuhn-Tucker Example

https://personal.math.ubc.ca/~israel/m340/kkk2.pdf

[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.


[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).

https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.


[48]   Ram Keval, Constrained Geometric Programming Problem.

[from Gooogle Search and Youtube].


[49] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.


[50] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.


[51] Han-Lin Li, Jung-Fa Tsai (2005).  Treating free variables in generalized geometric global optimization programs.  Journal of Global  Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012).   Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming.  European Journal of Operational Research 216 (2012) 17-25. 

[53]  Ming-Hua Lin,  Jung-Fa Tsai (2011).  Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443 


[54] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[55] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

  

[57]  Hao-Chun Lu (2012).   An efficient convexification method for solving generalized geometric problems.  Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455. 


[58]  Andreas Lundell, Tapio Westerlund, Convex underestimation strategies for signomial functions, Optimization Methods and Software 24 (4) 505-522, August 2009.


[59] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming

[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman.  Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[64] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.

[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017).  Comparison of algorithms for including equality constraints in signomial programming.  ACDL Technical Report TR-2017-1.  August 31 2017.  pp.1-23.  One can get a Google view of this report.

[68] Rashmi Ranjan Ota, jayanta kumar dASH, A. K. Ojha (2014). A hybrid optimization techniques for solving non-linear multi-objective optimization problem. amo-advanced modelling and optimization, volume 16,number 1, 2014.

[69] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.

[70] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[71] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.

[72] Yashpal Singh Raghav, Irfan Ali, Abdul Bari (2014) Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation and Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370.

[73] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf

[74] Singiresu S. Rao, Engineering Optimization, Fifth Edition, Wiley, New York, 2020.

[75] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[76] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).

[77] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[78] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.


[79] Shafiullah, Irfan Ali, Abdul Bari (2015). Fuzzy geometric programming approach in multi-objective multivariate stratified sample surveys in presence of non-respnse, International Journal of Operations Research, Vol. 12, No. 2, pp. 021-035 (2015).


[80] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.


[81] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.


[82] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.


[83] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.


[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm


[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. Journal of computational design and engineering 5 (2018) 104-119.


[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006).   An optimization approach for solving signomial discrete programming problems with free variables.  Computers and Chemical Engineering 30 (2006) 1256-1263.  

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).   On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) 10-19.  

[89] Jung-Fa Tsai, Ming-Hua Lin (2008).   Global optimization of signomial mixed-integer nonlinear programming problems with free variables.  Journal of Global Optimization (2008) 42:39-49.  


[90] Jung-Fa Tsai (2009).   Treatng free variables in generalized geometric programming problems.  Computers and Chemical Enginering 33 (2009) 239-243.  


[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020).  Global optimization for mixed-discrete structural design.  Symmetry 2020, 12, 1529

One can get a Google view of this article.  www.mdpi.com/journal/symmetry.


[92] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[93] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.


[94] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[95] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.


[96] Rahul Varshney, Najmussehar, M. J. Ahsan (2012). An optimum multivariate stratified double sampling design in presence of non-response, Optimization Letters (2012) 6: pp. 993-1008.


[97] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.


[98] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[99] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[100] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (101). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[101] Eric W. Weisstein, "Euler's Sum of Powers Conjecture." https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.


[102] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.


[103] Wayne L. Winston, (2004), Operations Research--Applications and Algorithms, Fourth Edition, Brooks/Cole--Thomson Learning, Belmont, California 94002.


[104] Helen Wu, (2015), Geometric Programming

https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming


[105] G. Xu, (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.


[106] James Yan.  Signomial programs with equality constraints: numerical solution and applications.  Ph. D. thesis. University of British Columbia, 1976. 

One can easily view this dissertation on Google.


Saturday, March 11, 2023

A Computer Program for Optimizing a Widely-Known Reactor Network Design (RND)

 


A Computer Program for Optimizing a Widely-Known Reactor Network Design (RND)    

Jsun Yui Wong

Similar to the computer program of the preceding paper, the computer program listed below aims to solve the following nonlinear programming formulation in Babu and Angira [10, p. 994]:   

Minimize 

 -X(4)    

subject to

         X(1)  + k1*X(1) * X(5)  = 1

         X(2) -X(1) +k2* X(2) * X(6) = 0

         X(3) + X(1) + k3 * X(3) * X(5) = 1

        X(4) - X(3) + X(2) - X(1) + k4 *X(4)* X(6) = 0

        X(5) ^ .5 + X(6) ^ .5 <= 4 

       (0, 0, 0, 0, 10^-5, 10^-5  ) <= X(1), X(2), X(3),  X(4), X(5), X(6) <= (1, 1, 1, 1, 16, 16). 

       where k1 = .09755988, k2 = .99 * k1, k3 = .0391908, k4 = .9 * k3.


0 REM DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    89 RANDOMIZE JJJJ

    90 M = -3D+30

    91 k1 = .09755988


    92 k2 = .99 * k1

    93 k3 = .0391908


    94 k4 = .9 * k3



    97 FOR J44 = 1 TO 4


        98 A(J44) = 0 + RND * 1


    99 NEXT J44


    113 FOR J44 = 5 TO 6



        114 A(J44) = 10 ^ -5 + RND * 16




    115 NEXT J44


    128 FOR i = 1 TO 60000


        129 FOR KKQQ = 1 TO 6


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 5)



            141 B = 1 + FIX(RND * 6)



            144 IF RND < .999 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            165 GOTO 168


            167 REM    IF RND < .5 THEN X(B) = A(B) - FIX(RND * 10) ELSE X(B) = A(B) + FIX(RND * 10)


        168 NEXT IPP




        181 X(1) = (1) / (1 + k1 * X(5))



        183 X(6) = (-X(2) + X(1)) / (k2 * X(2))



        188 X(3) = (1 - X(1)) / (1 + k3 * X(5))


        189 X(4) = (X(3) - X(2) + X(1)) / (1 + k4 * X(6))


        300 FOR J44 = 5 TO 6

            301 IF X(J44) > 16 THEN 1670



            302 IF X(J44) < 10 ^ -5 THEN 1670

        304 NEXT J44


        307 IF X(5) ^ .5 + X(6) ^ .5 > 4 THEN 1670




        321 FOR J44 = 1 TO 4


            324 IF X(J44) > 1 THEN 1670


            325 IF X(J44) < 0 THEN 1670

        328 NEXT J44


        340 FOR J44 = 5 TO 6

            342 IF X(J44) > 16 THEN 1670


            345 IF X(J44) < 10 ^ -5 THEN 1670


        348 NEXT J44


        468 PD1 = X(4)


        469 P = PD1


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 6


            1455 A(KLX) = X(KLX)


        1459 NEXT KLX


    1670 NEXT i

    1777 IF M < .3888 THEN 1999


    1888 PRINT A(1), A(2), A(3), A(4), A(5), A(6), M, JJJJ


1999 NEXT JJJJ


This computer program was run with qb64v1000-win [102].  Its complete output of one run through JJJJ=  -31996 is shown below:


.7707384       .5170515      .2047908      .3888113      3.048969   

5.079931      .3888113      -32000


.7750117       .5167151      .2014909      .3888094      2.975641   

5.175604      .3888094      -31996


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  By using the following computer system and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31996 was 3 seconds, counting from "Starting program...".   One can compare the computational results above with those in Babu and Angira [10, p. 994].  

The computational results presented above were obtained from the following computer system:  

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz   2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.


Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.

[3] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[4] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[5] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[6] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[7] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[8] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[9] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[10]  B. V. Babu, Rakesh Angira (2006).  Modified differential evolution (MDE) for optimization of non-linear chemical processes.  Computers and Chemical Engineering 30 (2006) 989-1002.

[11] Hirak Basumatary (1 January 2019). Solve system of equations and inequalities with multiple solutions?

https://www.mathworks.com/matlabcentral/answers/437815-solve-system-of-equations-and-inequalities-with-multiple-solutions?_tid=prof_contriblnk

[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton--Approximate nonlinear equations by sequence of linear equations--lecture 6.  (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[14] F. Bazikar, M. Saraj (2018), MathLAB Journal, vol. 1 no. 3, 2018.

http://purkh.com/index.php/mathlab


[15] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.


[16] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.


[17] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.


[18] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values.

https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute_values#Numerical_ Example


[19] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.


[20] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.


[21] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.


[22] H. W. Corley, E. O. Dwobeng (2020). Relating optimization problems to systems of inequalities and equalities, American Journal of Operations Research, 2020, 10, 284-298. https://www.scirp.org/journal/ajor.


[23] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[24] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[25] Kalyanmoy Deb, Amrit Pratap, Subrajyoti Moitra (2000). Mechanical component design for multi objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Probl.Solv. Nat. PPSN VI Conference, Paris, France, pp. 859-868 (2000). (Please see pp. 1-10 in Technical Report No. 200002 via Google search.)


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.


[27] Wassila Drici, Mustapha Moulai (2019): An exact method for solving multi-objective integer indefinite quadratic programs, Optimization Methods and Software.


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values...

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8...

[37] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.

[38] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[39] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems, Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263

[40] C. H. Huang, H. Y. Kao. (2009).  An effective linear approximation method for geometric programming problems, IEEE Publications, 1743-1746.

[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).

[42] R. Israel, A Karush-Kuhn-Tucker Example

https://personal.math.ubc.ca/~israel/m340/kkk2.pdf

[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.


[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).

https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.


[48]   Ram Keval, Constrained Geometric Programming Problem.

[from Gooogle Search and Youtube].


[49] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.


[50] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.


[51] Han-Lin Li, Jung-Fa Tsai (2005).  Treating free variables in generalized geometric global optimization programs.  Journal of Global  Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012).   Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming.  European Journal of Operational Research 216 (2012) 17-25. 

[53]  Ming-Hua Lin,  Jung-Fa Tsai (2011).  Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443 


[54] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[55] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

  

[57]  Hao-Chun Lu (2012).   An efficient convexification method for solving generalized geometric problems.  Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455. 


[58]  Andreas Lundell, Tapio Westerlund, Convex underestimation strategies for signomial functions, Optimization Methods and Software 24 (4) 505-522, August 2009.


[59] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming

[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman.  Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[64] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.

[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017).  Comparison of algorithms for including equality constraints in signomial programming.  ACDL Technical Report TR-2017-1.  August 31 2017.  pp.1-23.  One can get a Google view of this report.

[68] Rashmi Ranjan Ota, jayanta kumar dASH, A. K. Ojha (2014). A hybrid optimization techniques for solving non-linear multi-objective optimization problem. amo-advanced modelling and optimization, volume 16,number 1, 2014.

[69] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.

[70] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[71] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.

[72] Yashpal Singh Raghav, Irfan Ali, Abdul Bari (2014) Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation and Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370.

[73] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf

[74] Singiresu S. Rao, Engineering Optimization, Fifth Edition, Wiley, New York, 2020.

[75] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[76] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).

[77] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[78] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.


[79] Shafiullah, Irfan Ali, Abdul Bari (2015). Fuzzy geometric programming approach in multi-objective multivariate stratified sample surveys in presence of non-respnse, International Journal of Operations Research, Vol. 12, No. 2, pp. 021-035 (2015).


[80] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.


[81] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.


[82] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.


[83] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.


[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm


[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. Journal of computational design and engineering 5 (2018) 104-119.


[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006).   An optimization approach for solving signomial discrete programming problems with free variables.  Computers and Chemical Engineering 30 (2006) 1256-1263.  

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).   On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) 10-19.  

[89] Jung-Fa Tsai, Ming-Hua Lin (2008).   Global optimization of signomial mixed-integer nonlinear programming problems with free variables.  Journal of Global Optimization (2008) 42:39-49.  


[90] Jung-Fa Tsai (2009).   Treatng free variables in generalized geometric programming problems.  Computers and Chemical Enginering 33 (2009) 239-243.  


[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020).  Global optimization for mixed-discrete structural design.  Symmetry 2020, 12, 1529

One can get a Google view of this article.  www.mdpi.com/journal/symmetry.


[92] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[93] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.


[94] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[95] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.


[96] Rahul Varshney, Najmussehar, M. J. Ahsan (2012). An optimum multivariate stratified double sampling design in presence of non-response, Optimization Letters (2012) 6: pp. 993-1008.


[97] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.


[98] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[99] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[100] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (101). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[101] Eric W. Weisstein, "Euler's Sum of Powers Conjecture." https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.


[102] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.


[103] Wayne L. Winston, (2004), Operations Research--Applications and Algorithms, Fourth Edition, Brooks/Cole--Thomson Learning, Belmont, California 94002.

[104] Helen Wu, (2015), Geometric Programming

https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming

[105] G. Xu, (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.

[106] James Yan.  Signomial programs with equality constraints: numerical solution and applications.  Ph. D. thesis. University of British Columbia, 1976. 

One can easily view this dissertation on Google.


Friday, March 10, 2023

A Computer Program for Optimizing a Widely-Known Heat Exchanger Network Design

 


A Computer Program for Optimizing a Widely-Known Heat Exchanger Network Design        

Jsun Yui Wong

Similar to the computer program of the preceding paper, the computer program listed below aims to solve the following nonlinear programming formulation in Babu and Angira [10, pp. 993-994]. (Also see Yan [106, pp. 61-63, Problem C]):  


Minimize 

 X(1) +X(2) +X(3)   


subject to

.0025 *( X(4)+X(6) ) -1 = 0     


.0025 *( -X(4) +X(5)+X(7) ) -1 = 0     

      

 .01 *(- X(5)+X(8)) -1 = 0     


         833.33252 * X(4) + 100 * X(1) - X(1) * X(6) - 83333.333 <= 0 


         -1250 * X(4) + 1250 * X(5) + X(2) * X(4) - X(2) * X(7) <= 0 


         -2500 * X(5) + X(3) * X(5) - X(3) * X(8) + 1250000 <= 0 

            100 <=  X(1) <= 10000 

            1000 <=  X(2), X(3) <= 10000 

            10 <=  X(4), X(5), X(6), X(7), X(8) <= 1000. 


0 REM    DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    89 RANDOMIZE JJJJ

    90 M = -3D+30

    91 A(1) = 100 + RND * 9900

    92 FOR J44 = 2 TO 3

        93 A(J44) = 1000 + RND * 9000


    94 NEXT J44


    113 FOR J44 = 4 TO 8

        114 A(J44) = 10 + RND * 990



    115 NEXT J44


    128 FOR i = 1 TO 60000


        129 FOR KKQQ = 1 TO 8


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 8)



            141 B = 1 + FIX(RND * 8)



            144 IF RND < .999 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            165 GOTO 168


            167 REM    IF RND < .5 THEN X(B) = A(B) - FIX(RND * 10) ELSE X(B) = A(B) + FIX(RND * 10)


        168 NEXT IPP



        181 X(6) = (1 - .0025 * X(4)) / .0025



        183 X(8) = (1 + .01 * X(5)) / .01



        188 X(7) = (1 + .0025 * X(4) - .0025 * X(5)) / .0025


        211 IF 833.33252 * X(4) + 100 * X(1) - X(1) * X(6) - 83333.333 > 0 THEN 1670


        309 IF -1250 * X(4) + 1250 * X(5) + X(2) * X(4) - X(2) * X(7) > 0 THEN 1670


        310 IF -2500 * X(5) + X(3) * X(5) - X(3) * X(8) + 1250000 > 0 THEN 1670


        321 FOR J44 = 4 TO 8



            322 IF X(J44) > 1000 THEN 1670


            325 IF X(J44) < 10 THEN 1670


        328 NEXT J44



        340 FOR J44 = 2 TO 3


            342 IF X(J44) > 10000 THEN 1670


            345 IF X(J44) < 1000 THEN 1670


        348 NEXT J44


        387 IF X(1) > 10000 THEN 1670


        389 IF X(1) < 100 THEN 1670


        464 PD1 = (-X(1) - X(2) - X(3))


        466 P = PD1


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 8


            1455 A(KLX) = X(KLX)


        1459 NEXT KLX


    1670 NEXT i

    1777 IF M < -7049.55 THEN 1999

    1888 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [102].  Its complete output of one run through JJJJ=  -25170 is shown below:


557.9369      1364.732      5126.877      180.2055      294.9249   

219.7945      285.2806      395.4247      -7049.545      -28404


572.603      1362.292      5114.382      181.4551      295.4247   

218.5449      286.0304      395.4247      -7049.276      -27491


569.2181      1372.187      5107.926      181.169      295.683   

218.831      285.4861      395.683      -7049.331      -25170


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.  By using the following computer system and QB64v1000-win [102], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -25170 was 14 minutes, counting from "Starting program...".   One can compare the computational results above with those in Babu and Angira [10, pp. 993-994] and in Yan [106, p. 65, Table 4.3].  

The computational results presented above were obtained from the following computer system:  

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz   2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.

[3] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[4] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[5] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[6] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[7] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[8] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[9] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[10]  B. V. Babu, Rakesh Angira (2006).  Modified differential evolution (MDE) for optimization of non-linear chemical processes.  Computers and Chemical Engineering 30 (2006) 989-1002.

[11] Hirak Basumatary (1 January 2019). Solve system of equations and inequalities with multiple solutions?

https://www.mathworks.com/matlabcentral/answers/437815-solve-system-of-equations-and-inequalities-with-multiple-solutions?_tid=prof_contriblnk

[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton--Approximate nonlinear equations by sequence of linear equations--lecture 6.  (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[14] F. Bazikar, M. Saraj (2018), MathLAB Journal, vol. 1 no. 3, 2018.

http://purkh.com/index.php/mathlab


[15] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.


[16] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.


[17] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.


[18] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values.

https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute_values#Numerical_ Example


[19] Ta-Cheng Chen (2006). IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.


[20] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.


[21] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.


[22] H. W. Corley, E. O. Dwobeng (2020). Relating optimization problems to systems of inequalities and equalities, American Journal of Operations Research, 2020, 10, 284-298. https://www.scirp.org/journal/ajor.


[23] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[24] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[25] Kalyanmoy Deb, Amrit Pratap, Subrajyoti Moitra (2000). Mechanical component design for multi objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Probl.Solv. Nat. PPSN VI Conference, Paris, France, pp. 859-868 (2000). (Please see pp. 1-10 in Technical Report No. 200002 via Google search.)


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.


[27] Wassila Drici, Mustapha Moulai (2019): An exact method for solving multi-objective integer indefinite quadratic programs, Optimization Methods and Software.


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.

[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values...

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8...

[37] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.

[38] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.

[39] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems, Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263

[40] C. H. Huang, H. Y. Kao. (2009).  An effective linear approximation method for geometric programming problems, IEEE Publications, 1743-1746.

[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).

[42] R. Israel, A Karush-Kuhn-Tucker Example

https://personal.math.ubc.ca/~israel/m340/kkk2.pdf

[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44] N. K. Jain, V. K. Jain, K. Deb (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture 47 (2007), 900-919.


[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016).

https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.


[48]   Ram Keval, Constrained Geometric Programming Problem.

[from Gooogle Search and Youtube].


[49] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.


[50] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.


[51] Han-Lin Li, Jung-Fa Tsai (2005).  Treating free variables in generalized geometric global optimization programs.  Journal of Global  Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012).   Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming.  European Journal of Operational Research 216 (2012) 17-25. 

[53]  Ming-Hua Lin,  Jung-Fa Tsai (2011).  Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443 


[54] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[55] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

  

[57]  Hao-Chun Lu (2012).   An efficient convexification method for solving generalized geometric problems.  Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455. 


[58]  Andreas Lundell, Tapio Westerlund, Convex underestimation strategies for signomial functions, Optimization Methods and Software 24 (4) 505-522, August 2009.


[59] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming

[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman.  Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[64] Subhash C. Narula, H. Roland Weistroffer (1989). A flexible method for nonlinear criteria decisionmaking problems. Ieee Transactions on Systems, Man and Cybernetics, vol. 19 , no. 4, July/August 1989, pp. 883-887.

[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.

[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017).  Comparison of algorithms for including equality constraints in signomial programming.  ACDL Technical Report TR-2017-1.  August 31 2017.  pp.1-23.  One can get a Google view of this report.

[68] Rashmi Ranjan Ota, jayanta kumar dASH, A. K. Ojha (2014). A hybrid optimization techniques for solving non-linear multi-objective optimization problem. amo-advanced modelling and optimization, volume 16,number 1, 2014.

[69] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.

[70] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.

[71] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.

[72] Yashpal Singh Raghav, Irfan Ali, Abdul Bari (2014) Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation and Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370.

[73] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf

[74] Singiresu S. Rao, Engineering Optimization, Fifth Edition, Wiley, New York, 2020.

[75] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[76] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).

[77] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[78] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.


[79] Shafiullah, Irfan Ali, Abdul Bari (2015). Fuzzy geometric programming approach in multi-objective multivariate stratified sample surveys in presence of non-respnse, International Journal of Operations Research, Vol. 12, No. 2, pp. 021-035 (2015).


[80] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.


[81] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.


[82] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.


[83] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes’ Method of Multipliers to Resolve Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.


[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm


[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. Journal of computational design and engineering 5 (2018) 104-119.


[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006).   An optimization approach for solving signomial discrete programming problems with free variables.  Computers and Chemical Engineering 30 (2006) 1256-1263.  

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).   On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) 10-19.  

[89] Jung-Fa Tsai, Ming-Hua Lin (2008).   Global optimization of signomial mixed-integer nonlinear programming problems with free variables.  Journal of Global Optimization (2008) 42:39-49.  


[90] Jung-Fa Tsai (2009).   Treatng free variables in generalized geometric programming problems.  Computers and Chemical Enginering 33 (2009) 239-243.  


[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020).  Global optimization for mixed-discrete structural design.  Symmetry 2020, 12, 1529

One can get a Google view of this article.  www.mdpi.com/journal/symmetry.


[92] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[93] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.


[94] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[95] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.


[96] Rahul Varshney, Najmussehar, M. J. Ahsan (2012). An optimum multivariate stratified double sampling design in presence of non-response, Optimization Letters (2012) 6: pp. 993-1008.


[97] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.


[98] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017


[99] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[100] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (101). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.


[101] Eric W. Weisstein, "Euler's Sum of Powers Conjecture." https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.


[102] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.


[103] Wayne L. Winston, (2004), Operations Research--Applications and Algorithms, Fourth Edition, Brooks/Cole--Thomson Learning, Belmont, California 94002.

[104] Helen Wu, (2015), Geometric Programming

https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming

[105] G. Xu, (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.

[106] James Yan.  Signomial programs with equality constraints: numerical solution and applications.  Ph. D. thesis. University of British Columbia, 1976. 

One can easily view this dissertation on Google.