Friday, May 23, 2014

Testing the Nonlinear Integer Programming Solver with an Integer Version of Schittkowski's Problem 286

Jsun Yui Wong

Similar to the computer program of the preceding paper, the following computer program seeks to solve an integer version of Schittkowski's Problem 286 [11, p. 110]; only integer solutions are of interest in the present paper.  Hence in the present paper the problem is to minimize the following:

10
SIGMA ( 100*(  X(i)^2-X(i+10)  )^2  +  ( X(i )  -1  )  ^2  )
i=1

subject to -10<= X(i)<=10, X(i) integer, i=1, 2, 3,..., 20.  See Schittkowsi [11, p. 110].

0 REM  DEFDBL A-Z
1 DEFINT J,K,X,B
2 DIM A(10001),X(10001)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
110 FOR J44=1 TO 20
112 A(J44)=-10+FIX(  RND*21)
113 NEXT J44
128 FOR I=1 TO 32000
129 FOR KKQQ=1 TO 20
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*21)
144    GOTO 167
150    R=(1-RND*2)*A(B)
155    IF RND<.5 THEN         160 ELSE 167
160    X(B)=(A(B)     +RND^3*R)
165 GOTO 168
167    IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B)     +1)
168 REM   IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
170 REM GOTO 220
212   FOR J44=1 TO 20
213     IF X(J44)<-10 THEN X(J44)=A(J44)
214     IF X(J44)>10 THEN X(J44)=A(J44)
215   NEXT J44
220 SUMM=0
222 FOR J44=1 TO 10
223 SUMM=SUMM+( 100*(  X(J44)^2-X(J44+10)  )^2  +  ( X( J44 )  -1  )  ^2  )
226 NEXT J44
333 PD1=-SUMM
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 20
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1457 GOTO 1557
1544 IF M<-8 THEN 1557
1546 PRINT I,A(20),M,JJJJ
1557 GOTO 128
1670 NEXT I
1889 IF M<-2 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT A(11),A(12),A(13),A(14),A(15)
1907 PRINT A(16),A(17),A(18),A(19),A(20)
1927 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See [8].  The complete output through JJJJ=-31636 is copied by hand from the screen and shown below.  Immediately below there is no rounding by hand.

1   1   1   1   2
1   1   1   2   1
1   1   1   1   4
1   1   1   4   1
-2   -31986

1   1   1   1   1
1   2   1   1   1
1   1   1   1   1
1   4   1   1   1
-1   -31834

1   1   1   2   1
2   1   1   1   1
1   1   1   4   1
4   1   1   1   1
-2   -31833

1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
0   -31636
 
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31636 was 23 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American   Mathematical Monthly American , Volume 18 #2, pp. 29-32.

[4] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[5] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[6] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[7] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Publisher: Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[8] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[9] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[10] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Publisher: Elsevier Science Ltd (1989).

[11] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[12] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[13] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/