Saturday, July 12, 2014

Erratum: A Unified Computer Program for an Integer Version of Schittkowski's Test Problem 281 but with 10000 General Integer Variables

Jsun Yui Wong

The last paragraph should read as follows:

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31998 was 24 hours.
 

Friday, July 11, 2014

A Unified Computer Program for an Integer Version of Schittkowski's Test Problem 281 but with 10000 General Integer Variables

Jsun Yui Wong
 
Similar to the computer programs of the preceding papers, the computer program below seeks to solve an integer version of Schittkowski's Test Problem 281 [14, p. 105] but with 10,000 unknowns instead 10 unknowns.  The source of this Test Problem 281 is S. Walukiewicz; see Schittkowski [14].  Thus, the computer program below tries to minimize the following:

  10000
[ SIGMA       i^3*(X(i)-1)^2   ]^(1/3)
  i=1

subject to

-5<= X(i) <=5, X(i) integer, i=1, 2, 3,..., 10000.

0 REM DEFDBL A-Z
1 DEFINT J,K,B,X
2 DIM A(10000),X(10000)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
110 FOR J44=1 TO 10000
112 A(J44)=-5+ RND*(10)
114 NEXT J44
128 FOR I=1 TO 32000
129 FOR KKQQ=1 TO 10000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10000)
144 GOTO 167
145 IF RND<.5 THEN 150 ELSE         163
150 R=(1-RND*2)*A(B)
160 X(B)=(A(B)     +RND^3*R)
162 GOTO 168
163 IF RND<.5 THEN X(B)=(A(B)-.001)   ELSE X(B)=(A(B)     +.001   )
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1)   ELSE X(B)=CINT(A(B)     +1   )
168 REM    IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
400 SONE=0
401 FOR J44=1 TO 10000
403 SONE=SONE+J44^3*(X(J44)-1)^2
405 NEXT J44
666 PD1= -SONE^(1/3)
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10000
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 REM IF M<-.5 THEN 1999
1923 PRINT A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(8),A(9),A(10)
1924 PRINT A(11),A(12),A(13),A(14),A(15),A(16),A(17),A(18),A(19),A(20)
1925 PRINT A(4991),A(4992),A(4993),A(4994),A(4995),A(4996),A(4997),A(4998),A(4999),A(5000)
1927 PRINT A(5991),A(5992),A(5993),A(5994),A(5995),A(5996),A(5997),A(5998),A(5999),A(6000)
1928 PRINT A(7991),A(7992),A(7993),A(7994),A(7995),A(7996),A(7997),A(7998),A(7999),A(8000)
1929 PRINT A(9991),A(9992),A(9993),A(9994),A(9995),A(9996),A(9997),A(9998),A(9999),A(10000)
1939 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See the BASIC manual [11].  Copied by hand from the screen, the complete output through
JJJJ=-31998 is shown below:

3   0   -1   0   3
2   2   1   1   0
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
-776.0568   -32000

-4   3   2   1   2
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
-96.00754   -31999

1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
0   -31998

M=0 is optimal; see Schittkowski [14, p.105].
 
Above there is no rounding by hand.

Of the 10000 A's, only the 60 A's of line 1923, line 1924, line 1925, line 1927, line 1928, and line 1929 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31998 was 32 hours.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[5] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[7] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[8] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[9] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[10] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Publisher: Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[11] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[12] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[13] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Publisher: Elsevier Science Ltd (1989).

[14] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[15] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[16] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[17] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[18] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html

Saturday, July 5, 2014

A Unified Computer Program for an Integer Version of Schittkowski's Test Problem 273 but with 15 General Integer Variables of Lower Bounds of -1000's and Upper Bounds of +1000's

Jsun Yui Wong
 
Similar to the computer programs of the preceding papers, the computer program below seeks to solve an integer version of Schittkowski's Test Problem 273 [14, p. 97] but with 15 unknowns instead of 6 unknowns.  The source of this Test Problem 273 is S. Walukiewicz; see Schittkowski [14].  Thus, the computer program below tries to minimize the following:

          15                                                                15
10*    SIGMA     (16-i)*(X(i)-1)^2      +   10*   [ SIGMA     (16-i)*(X(i)-1)^2   ]^2
          i=1                                                               i=1

subject to

-1000<= X(i) <=1000, X(i) integer, i=1, 2, 3,..., 15.

The lower bounds and the upper bounds are shown in line 112, which is 112 A(J44)=-1000+ RND*(2000).

0 REM DEFDBL A-Z
1 DEFINT J,K,B,X
2 DIM A(1000),X(1000)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
110 FOR J44=1 TO 15
112 A(J44)=-1000+ RND*(2000)
114 NEXT J44
128 FOR I=1 TO 3200
129 FOR KKQQ=1 TO 15
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*15)
144 GOTO 167
145 IF RND<.5 THEN 150 ELSE         163
150 R=(1-RND*2)*A(B)
160 X(B)=(A(B)     +RND^3*R)
162 GOTO 168
163 IF RND<.5 THEN X(B)=(A(B)-.001)   ELSE X(B)=(A(B)     +.001   )
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1)   ELSE X(B)=CINT(A(B)     +1   )
168 REM   IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
400 SONE=0
401 FOR J44=1 TO 15
403 SONE=SONE+(16-J44)*(X(J44)-1)^2
405 NEXT J44
410 STWO=0
411 FOR J44=1 TO 15
413 STWO=STWO+  ( 16-J44)*(X(J44)   -1)^2
415 NEXT J44
666 PD1= -10*SONE        -10*STWO^2
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 15
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 REM  IF M<-2 THEN 1999
1923 PRINT A(1),A(2),A(3),A(4)
1929 PRINT A(5),A(6),A(7),A(8)
1943 PRINT A(9),A(10),A(11),A(12)
1945 PRINT A(13),A(14),A(15)
1949 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See the BASIC manual [11].  Copied by hand from the screen, the complete output through
JJJJ=-31998 is shown below:

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -32000

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -31999

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -31998

Above there is no rounding by hand.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31998 was ten seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[5] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[7] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[8] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[9] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[10] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Publisher: Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[11] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[12] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[13] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Publisher: Elsevier Science Ltd (1989).

[14] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[15] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[16] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[17] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[18] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html