Saturday, July 5, 2014

A Unified Computer Program for an Integer Version of Schittkowski's Test Problem 273 but with 15 General Integer Variables of Lower Bounds of -1000's and Upper Bounds of +1000's

Jsun Yui Wong
 
Similar to the computer programs of the preceding papers, the computer program below seeks to solve an integer version of Schittkowski's Test Problem 273 [14, p. 97] but with 15 unknowns instead of 6 unknowns.  The source of this Test Problem 273 is S. Walukiewicz; see Schittkowski [14].  Thus, the computer program below tries to minimize the following:

          15                                                                15
10*    SIGMA     (16-i)*(X(i)-1)^2      +   10*   [ SIGMA     (16-i)*(X(i)-1)^2   ]^2
          i=1                                                               i=1

subject to

-1000<= X(i) <=1000, X(i) integer, i=1, 2, 3,..., 15.

The lower bounds and the upper bounds are shown in line 112, which is 112 A(J44)=-1000+ RND*(2000).

0 REM DEFDBL A-Z
1 DEFINT J,K,B,X
2 DIM A(1000),X(1000)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
110 FOR J44=1 TO 15
112 A(J44)=-1000+ RND*(2000)
114 NEXT J44
128 FOR I=1 TO 3200
129 FOR KKQQ=1 TO 15
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*15)
144 GOTO 167
145 IF RND<.5 THEN 150 ELSE         163
150 R=(1-RND*2)*A(B)
160 X(B)=(A(B)     +RND^3*R)
162 GOTO 168
163 IF RND<.5 THEN X(B)=(A(B)-.001)   ELSE X(B)=(A(B)     +.001   )
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1)   ELSE X(B)=CINT(A(B)     +1   )
168 REM   IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
400 SONE=0
401 FOR J44=1 TO 15
403 SONE=SONE+(16-J44)*(X(J44)-1)^2
405 NEXT J44
410 STWO=0
411 FOR J44=1 TO 15
413 STWO=STWO+  ( 16-J44)*(X(J44)   -1)^2
415 NEXT J44
666 PD1= -10*SONE        -10*STWO^2
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 15
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 REM  IF M<-2 THEN 1999
1923 PRINT A(1),A(2),A(3),A(4)
1929 PRINT A(5),A(6),A(7),A(8)
1943 PRINT A(9),A(10),A(11),A(12)
1945 PRINT A(13),A(14),A(15)
1949 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See the BASIC manual [11].  Copied by hand from the screen, the complete output through
JJJJ=-31998 is shown below:

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -32000

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -31999

1   1   1   1
1   1   1   1    
1   1   1   1
1   1   1  
0   -31998

Above there is no rounding by hand.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31998 was ten seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[5] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[7] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[8] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[9] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[10] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Publisher: Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[11] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[12] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[13] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Publisher: Elsevier Science Ltd (1989).

[14] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[15] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[16] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[17] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[18] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html