Thursday, October 30, 2014

A General Nonlinear Integer/Continuous/Discrete Programming Computer Program Applied to Li and Sun's Problem 14.3 but with Two Added Constraints and 10000 Zero-One Variables

Jsun Yui Wong

Numerous problems can be formulated as nonlinear 0-1 integer programming problems; see Dantzig [4] and Balas [1].  The test example used here is based on Li and Sun's Problem 14.3, [11, pp. 414-415]; the source is S. Walukiewicz--see Schittkowski's Test Problem 282 [15, p. 106].  Specifically the computer program below tries to minimize the following:

                                                                10000-1
(X(1)-1)^2+ ( X(10000)-1)^2  +10000* SIGMA  (10000-i)*  (  X(i)^2-X(i+1)  )^2
                                                                 i=1

subject to

X(1)^3+X(2)^3+X(3)^3+...+X(10000)^3  =  10000

X(1)+X(2)+X(3)+...+X(10000)  <=  10000

0<=X(i)<=1, X(i) integer, i=1, 2, 3,..., 10000.

The following computer program uses the IBM Personal Computer BASIC Compiler--through A:\>bascom and A:\>link--Copyright IBM Corp 1982 Version 1.00/Copyright Microsoft, Inc. 1982.

0 REM DEFDBL A-Z
1 DEFINT J,K,B,X
2 DIM A(10001),X(10001)
81 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
111 FOR J44=1 TO 10000
114 A(J44)=+FIX(RND*2)
117 NEXT J44
128 FOR I=1 TO 32000
129 FOR KKQQ=1 TO 10000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10000)
168  IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
171 FOR J44=1 TO 10000
174 IF X(J44)>1 THEN X(J44 )=A(J44  )
175 IF X(J44)<0 THEN X(J44 )=A(J44  )
177 NEXT J44
180 SUMY=0
183 FOR J44=1 TO 10000
185 SUMY=SUMY+X(J44)^3
187 NEXT J44
188 U=10000-SUMY
194 SUMNEW=0
195 FOR J44=1 TO 10000
196 SUMNEW=SUMNEW+X(J44)
197 NEXT J44
198  X(10001)=10000- SUMNEW
199 IF X(10001)<0 THEN X(10001)=X(10001) ELSE X(10001)=0
200 SUMNEWZ=0
203 FOR J44=1 TO 9999
205 SUMNEWZ=SUMNEWZ+   (10000-J44)*  (  X(J44)^2-X(J44+1)  )^2
207 NEXT J44
411 SONE=  - (X(1)-1)^2 -  ( X(10000)-1)^2  -10000* SUMNEWZ
689 PD1=SONE  +5000000!*X(10001)-5000000!*ABS(U)
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10001
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1555 UU=U
1557 GOTO 128
1670 NEXT I
1889 REM  IF M<-33333! THEN 1999
1931 PRINT A(1),A(2),A(3),A(4),A(5)
1932   PRINT A(56),A(57),A(58),A(59),A(60)
1933   PRINT A(76),A(77),A(78),A(79),A(80)
1934 PRINT A(96),A(97),A(98),A(99),A(100)
1938   PRINT A(7996),A(7997),A(7998),A(7999),A(8000)
1939 PRINT M,JJJJ,UU
1999 NEXT JJJJ

This BASIC computer program was run with the IBM Personal Computer BASIC Compiler, Version 1.00.  See the BASIC manual [12, page iii, Preface].  Copied by hand from the screen, the computer program's complete output through JJJJ=-31999 is shown below:

1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
-2.1801E+08   -32000   11

1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
0   -31999   0

Above there is no rounding by hand; it is just straight copying by hand from the screen.

M=0 is optimal.  See Li and Sun [11, pp. 414-415].

Of the 10000 A's, only the 25 A's of line 1931 through  line 1938 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and  the IBM Personal Computer BASIC Compiler, Copyright IBM Corp 1982 Version 1.00/Copyright Microsoft, Inc. 1982, the wall-clock time for obtaining the output through JJJJ=-31999 was 8 hours.    
   
Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] George B. Dantzig, Discrete-Variable Extrenum Problems.  Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[5] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[6] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[7] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[8] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[9] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[10] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[11] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[12] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[13] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[14] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Elsevier Science Ltd (1989).

[15] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[16] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[17] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[18] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[19] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html