Sunday, November 16, 2014

A General Nonlinear Integer/Continuous/Discrete Programming Computer Program Applied to Li and Sun's Problem 14.3 but with 10000 General Integer Variables and Two Added Constraints, Including X(1)^3+X(2)^3+X(3)^3+...+X(10000)^3 = 0

Jsun Yui Wong

Similar to the computer programs of the preceding papers, the computer program below seeks to solve Li and Sun's Problem 14.3, [10, p. 414], but with 10000 unknowns instead of 100 unknowns and with two added constraints.  The source is S. Walukiewicz--see Schittkowski's Test Problem 282 [14, p. 106]. Specifically the computer program below tries to minimize the following:

                                                                10000-1
(X(1)-1)^2+ ( X(10000)-1)^2  +10000* SIGMA  (10000-i)*  (  X(i)^2-X(i+1)  )^2
                                                                 i=1

subject to

X(1)^3+X(2)^3+X(3)^3+...+X(10000)^3  =  10000

X(1)+X(2)+X(3)+...+X(10000)  <=  10000

-5<=X(i)<=5, X(i) integer, i=1, 2, 3,..., 10000.

One notes line 85, line 114, and line 174, which are 85 UB=1+FIX(RND*5),
114 A(J44)=+FIX(RND*2), and 174 IF X(J44)>UB THEN X(J44 )=A(J44  ), respectively.

1 DEFINT J,K,B,X
2 DIM A(10001),X(10001)
81 FOR JJJJ=-32000 TO 32000
85 UB=1+FIX(RND*5)
89 RANDOMIZE JJJJ
90 M=-1.5D+38
111 FOR J44=1 TO 10000
114 A(J44)=+FIX(RND*2)
117 NEXT J44
128 FOR I=1 TO 32000 STEP .5
129 FOR KKQQ=1 TO 10000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10000)
167 IF RND<.5 THEN X(B)=CINT(A(B)-1)   ELSE X(B)=CINT(A(B)     +1   )
168 REM  IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
171 FOR J44=1 TO 10000
174 IF X(J44)>UB THEN X(J44 )=A(J44  )
175 IF X(J44)<-5 THEN X(J44 )=A(J44  )
177 NEXT J44
180 SUMY=0
183 FOR J44=1 TO 10000
185 SUMY=SUMY+X(J44)^3
187 NEXT J44
188 U=10000-SUMY
194 SUMNEW=0
195 FOR J44=1 TO 10000
196 SUMNEW=SUMNEW+X(J44)
197 NEXT J44
198  X(10001)=10000- SUMNEW
199 IF X(10001)<0 THEN X(10001)=X(10001) ELSE X(10001)=0
200 SUMNEWZ=0
203 FOR J44=1 TO           9999
205 SUMNEWZ=SUMNEWZ+   (10000-J44)*  (  X(J44)^2-X(J44+1)  )^2
207 NEXT J44
411 SONE=  - (X(1)-1)^2 -  ( X(10000)-1)^2  -10000* SUMNEWZ
689 PD1=SONE  +5000000!*X(10001)   -5000000!*ABS(U)
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10001
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1555 UU=U
1557 UUB=UB
1559 GOTO 128
1670 NEXT I
1889 REM  IF M<-33333! THEN 1999
1931 PRINT A(1),A(2),A(3),A(4),A(5)
1932   PRINT A(56),A(57),A(58),A(59),A(60)
1933   PRINT A(76),A(77),A(78),A(79),A(80)
1934 PRINT A(96),A(97),A(98),A(99),A(100)
1938   PRINT A(9996),A(9997),A(9998),A(9999),A(10000)
1939 PRINT M,JJJJ,A(10001),UU,UUB
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See the BASIC manual [11].  Copied by hand from the screen, the computer program's complete output through JJJJ=-32000 is shown below:

1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
1   1   1   1   1
0        -32000        0       0        1

Above there is no rounding by hand.

M=0 is optimal; see Li and Sun [10, p. 416].

Of the 10000 A's, only the 25 A's of line 1931 through line 1938 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-32000 was 9 hours.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[5] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[7] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[8] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[9] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[10] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Publisher: Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[11] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[12] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[13] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Publisher: Elsevier Science Ltd (1989).

[14] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[15] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[16] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[17] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[18] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html