Saturday, November 28, 2015

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with a System of 155 Simultaneous Nonlinear Equations

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [8, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [7, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [9], the following computer program seeks to solve the strictly convex problem in Cao [2, p. 7, Problem 12]; here the case of 155 simultaneous equations/unknowns is considered.  One notes line 187, which is
187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1.

0 DEFDBL A-Z

3 DEFINT J, K

4 DIM X(52768), A(52768), K(52768), P(52222)



5 FOR JJJJ = -32000 TO 32000




    14 RANDOMIZE JJJJ

    16 M = -1D+50

    91 FOR KK = 1 TO 155


        94 A(KK) = RND * (1)



    95 NEXT KK

    128 FOR I = 1 TO 3000000 STEP 1


        129 FOR K = 1 TO 155



            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 155)




            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1


        191 NEXT IPP
        233 REM




        771 FOR J44 = 1 TO 155




            773 P(J44) = -ABS(EXP(X(J44)) - 1)





        777 NEXT J44
        800 P = 0

        801 FOR J44 = 1 TO 155


            822 P = P + P(J44)



        888 NEXT J44


        999 REM

        1111 P = P


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 155


            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1890 REM  IF M < -500 THEN 1999



    1912 PRINT A(1), A(2), A(3)


    1913 PRINT A(4), A(5), A(6)


    1922 PRINT A(149), A(150), A(151)




    1924 PRINT A(152), A(153), A(154)


    1949 PRINT A(155), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [9]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31999 is shown below.

0   0   0
0   0   0
0   0   0
0   0   0
0        0       -32000

0   0   0
0   0   0
0   0   0
0   0   0
0        0       -31999

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 155 unknowns, only the 13 A's of line 1912  through line 1949 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [9], the wall-clock time for obtaining the output through JJJJ= -31999 was three minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] Huiping Cao, Global Convergence of Schubert's Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages.  Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[4] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[5] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[6] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[8] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[9] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[10] M. Ziani, F. Guyomarc'h, An Autoadaptive Limited Memory Broyden's Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211.  web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

Tuesday, November 24, 2015

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with an Exponential Problem of 2000 Equations/Unknowns

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [8, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [7, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [9], the following computer program seeks to solve the first exponential problem in Cao [2, p. 7, Problem 5]; here the case of 2000 equations/unknowns is considered.

0 DEFDBL A-Z

3 DEFINT J, K

4 DIM X(52768), A(52768), K(52768), P(52222)


5 FOR JJJJ = -32000 TO 32000



    14 RANDOMIZE JJJJ

    16 M = -1D+50

    91 FOR KK = 1 TO 2000



        94 A(KK) = RND * (2)





    95 NEXT KK

    128 FOR I = 1 TO 1000000 STEP 1



        129 FOR K = 1 TO 2000




            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 2003)



            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1





        191 NEXT IPP




        222 FOR J44 = 1 TO 2000




            227 IF X(J44) > 80 THEN 1670
        229 NEXT J44




        770 P(1) = -ABS(EXP(X(1) - 1) - 1)




        771 FOR J44 = 2 TO 2000




            774 P(J44) = -ABS(J44 * (EXP(X(J44) - 1) - X(J44)))




        777 NEXT J44
        800 P = 0

        801 FOR J44 = 2 TO 2000



            822 P = P + P(J44)



        888 NEXT J44




        999 REM

        1111 P = P(1) + P





        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 2000



            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1890 REM  IF M < -500 THEN 1999



    1912 PRINT A(1), A(2), A(3)
    1915 PRINT A(4), A(5), A(6)


    1917 PRINT A(7), A(8), A(9)


    1927 PRINT A(557), A(558), A(559)

    1937 PRINT A(1333), A(1334), A(1335)



    1947 PRINT A(1555), A(1556), A(1557)


    1949 PRINT A(2000), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [9]. Copied by hand from the screen, the computer program’s complete output through
JJJJ= -31998 is shown below.

1           1.000000004608297           1
1   1   1
1   1   1
1   1   1
1   1   1
1           1.00000000000034           1
1         0         -32000

1   1   1
1   1   1
1   1   1
1   1   1
1           1.000000000621198           1
1   1   1
1         0         -31999

1   1   1
1   1   1
1   1   1
1   1   1
1   1   1
1   1   1
1         0         -31998

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 2000 unknowns, only the 19 A's of line 1912  through line 1949 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [9], the wall-clock time for obtaining the output through JJJJ= -31998 was 14 minutes.  

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] Huiping Cao, Global Convergence of Schubert's Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages.  Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[4] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[5] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[6] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[8] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[9] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[10] M. Ziani, F. Guyomarc'h, An Autoadaptive Limited Memory Broyden's Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211.  web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

Saturday, November 21, 2015

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with Another System of Ten Nonlinear Equations

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [8, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [7, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [9], the following computer program seeks to solve the discrete value problem in Cao [2, p. 7].

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(32768), A(32768), L(32768), K(32768)



5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+50

    22 h = 1 / (11)

    91 FOR KK = 1 TO 10




        94 A(KK) = RND * (-3)




    95 NEXT KK

    128 FOR I = 1 TO 100000 STEP 1





        129 FOR K = 1 TO 10




            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 10)




            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = INT(A(B))




        191 NEXT IPP

        555 X(2) = 2 * X(1) + .5 * h ^ 2 * (X(1) + h) ^ 3




        566 X(9) = 2 * X(10) + .5 * h ^ 2 * (X(10) + h * (10)) ^ 3





        605 FOR J49 = 3 TO 8

            609 X(J49) = -2 * X(J49 - 1) - .5 * h ^ 2 * (X(J49 - 1) + h * (J49 - 1)) ^ 3 + X(J49 - 2)




        611 NEXT J49

        655 P1 = 2 * X(8) + .5 * h ^ 2 * (X(8) + h * (8)) ^ 3 - X(7) + X(9)





        688 P2 = 2 * X(9) + .5 * h ^ 2 * (X(9) + h * (9)) ^ 3 - X(8) + X(10)




        999 P = -ABS(P1) - ABS(P2)



        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 10




            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1890 IF M < -.5 THEN 1999



    1912 PRINT A(1), A(2), A(3)
    1915 PRINT A(4), A(5), A(6)


    1917 PRINT A(7), A(8), A(9)


    1939 PRINT A(10), M, JJJJ


1999 NEXT JJJJ

This computer program was run with qb64v1000-win [9]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -32000 is shown below.

-4.567659878764215D-06              -6.031181084693952D-06           -1.733967908702962D-05
-5.516021417404762D-05              -1.056236674287388D-04           -2.31718235140485D-04
-3.119279490344034D-04              -6.711772488166832D-04           -5.54735236918666D-04
-1.820364584748423D-03              -1.421024882752361D-16           -32000

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [9], the wall-clock time for obtaining the output through JJJJ= -32000 was 3 seconds, not including "creating .EXE file" time.  

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] Huiping Cao, Global Convergence of Schubert's Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages.  Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[4] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[5] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[6] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[8] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[9] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[10] M. Ziani, F. Guyomarc'h, An Autoadaptive Limited Memory Broyden's Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211.  web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with a Broyden Tridiagonal System of Nonlinear Equations

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [7, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [6, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [8], the following computer program seeks to solve simultaneously Broyden's tridiagonal system of ten nonlinear equations; see Ziani and Guyomarc'h [9, page 211].

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(32768), A(32768), L(32768), K(32768)



5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+50



    91 FOR KK = 1 TO 10




        94 A(KK) = RND * (-3)



    95 NEXT KK

    128 FOR I = 1 TO 100000 STEP 1


        129 FOR K = 1 TO 10




            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 10)




            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = INT(A(B))




        191 NEXT IPP

        555 X(2) = .5 * (1 + (3 - 2 * X(1)) * X(1))




        566 X(9) = 1 + (3 - 2 * X(10)) * X(10)




        605 FOR J49 = 3 TO 8

            608 X(J49) = .5 * ((3 - 2 * X(J49 - 1)) * X(J49 - 1) - X(J49 - 2) + 1)






        611 NEXT J49

        655 P1 = ((3 - 2 * X(8)) * X(8) - X(7) - 2 * X(9) + 1)




        688 P2 = ((3 - 2 * X(9)) * X(9) - X(8) - 2 * X(10) + 1)



        999 P = -ABS(P1) - ABS(P2)



        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 10





            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1890 IF M < -.5 THEN 1999



    1912 PRINT A(1), A(2), A(3)
    1915 PRINT A(4), A(5), A(6)


    1917 PRINT A(7), A(8), A(9)



    1939 PRINT A(10), M, JJJJ


1999 NEXT JJJJ

This computer program was run with qb64v1000-win [8]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31955 is shown below.

-.5707221320112302                   -.6818069499842895                                 -.7022100760176984                  
-.7055106298951845                   -.7049061557290275                                 -.7014966070306247                  
-.691889322356902                     -.6657965144115334                                 -.5960351090279503

-.416412257529033                               -2.906452856166197D-11                          -31955

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [8], the wall-clock time for obtaining the output through JJJJ= -31955 was 10 seconds, not including "creating .EXE file" time.  

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[3] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[4] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[5] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[7] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[8] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[9] M. Ziani, F. Guyomarc'h, An Autoadaptive Limited Memory Broyden's Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211.  web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

Wednesday, November 4, 2015

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with Brown’s Almost Linear System of 5000 Equations/Unknowns

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [7, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [6, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [8], the following computer program seeks to solve simultaneously Brown's almost linear system of 5000 equations; see Morgan [5, page 15],  Floudas [2, page 660], and Han and Han [3, page 227, Example 3].   While line 94 and line 128 of the preceding paper are 94 A(KK) = RND * 5 and 128 FOR I = 1 TO 400000 STEP 1, respectively, here line 94 and line 128 are 94 A(KK) = RND * 3 and 128 FOR I = 1 TO 2000000 STEP 1, respectively.

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(5003), A(5003), L(5003), K(5003)

5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17


    91 FOR KK = 1 TO 5000


        94 A(KK) = RND * 3


    95 NEXT KK

    128 FOR I = 1 TO 2000000 STEP 1



        129 FOR K = 1 TO 5000


            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 5000)



            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))

        191 NEXT IPP


        301 prodd = 1



        305 FOR j55 = 2 TO 5000



            311 prodd = prodd * X(j55)


        321 NEXT j55

        371 IF prodd < .00001 THEN 1670


        389 X(1) = (1) / prodd


        501 summ = 0
        505 FOR j27 = 1 TO 5000


            511 summ = summ + X(j27)

        521 NEXT j27



        901 DIFF = 0


        905 FOR J77 = 1 TO 4999


            911 DIFF = DIFF - ABS(X(J77) + summ - 5001)


        921 NEXT J77


        995 P = DIFF


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 5000



            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P
    1670 NEXT I
    1890 IF M < -.00001 THEN 1999


    1912 PRINT A(1), A(2), A(3)
    1915 PRINT A(4), A(5), A(6)


    1917 PRINT A(7), A(8), A(9)


    1930 PRINT A(4991), A(4992), A(4993)


    1931 PRINT A(4994), A(4995), A(4996)

    1933 PRINT A(4997), A(4998), A(4999)

    1939 PRINT A(5000), M, JJJJ
1999 NEXT JJJJ

This computer program was run with qb64v1000-win [8]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31996 is shown below.

1.000000005436172           1         .99999999965176291
1            1            1
1            1            1
.9999999999986794          1           1
1            1            1
1            1            1
1              -1.920321127446556D-06              -32000

.9999999662810266         1          1
1            1            1
1            1            1
1            1            1
1            1            1
1            1            1
1              -7.11476723314064D-06                -31997

.999999709188973               1             1
1            1            1
1            1            1
1            1            1
1            1            1
1            1            1
1.000000000000012             -7.247766151685653D-07            -31996

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 5000 values for the 5000 unknowns, only the 19 A's of line 1912 through line 1939 of the computer program above are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [8], the wall-clock time for obtaining the output through JJJJ= -31996 was 80 minutes.    

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[3] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[4] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[5] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[7] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[8] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64