Saturday, November 21, 2015

Testing the Domino Method of General Integer/Continuous/Mixed Nonlinear Programming with a Broyden Tridiagonal System of Nonlinear Equations

Jsun Yui Wong

"Solving systems of nonlinear equations is perhaps the most difficult problem in all of numerical computations," Rice [7, 1993, p. 355].

"We make an extreme, but wholly defensible, statement: There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods," Press, Teukolsky, Vetterling, and Flannery [6, 2007, p. 473].

"Solving a system of nonlinear equations is a problem that is avoided where possible, customarily by approximating the nonlinear system by a system of linear equations.  When this is unsatisfactory, the problem must be tackled directly," Burden, Faires, and Burden [1, 2016, page 642].

Using qb64v1000-win [8], the following computer program seeks to solve simultaneously Broyden's tridiagonal system of ten nonlinear equations; see Ziani and Guyomarc'h [9, page 211].

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(32768), A(32768), L(32768), K(32768)



5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+50



    91 FOR KK = 1 TO 10




        94 A(KK) = RND * (-3)



    95 NEXT KK

    128 FOR I = 1 TO 100000 STEP 1


        129 FOR K = 1 TO 10




            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 10)




            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = INT(A(B))




        191 NEXT IPP

        555 X(2) = .5 * (1 + (3 - 2 * X(1)) * X(1))




        566 X(9) = 1 + (3 - 2 * X(10)) * X(10)




        605 FOR J49 = 3 TO 8

            608 X(J49) = .5 * ((3 - 2 * X(J49 - 1)) * X(J49 - 1) - X(J49 - 2) + 1)






        611 NEXT J49

        655 P1 = ((3 - 2 * X(8)) * X(8) - X(7) - 2 * X(9) + 1)




        688 P2 = ((3 - 2 * X(9)) * X(9) - X(8) - 2 * X(10) + 1)



        999 P = -ABS(P1) - ABS(P2)



        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 10





            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


    1670 NEXT I
    1890 IF M < -.5 THEN 1999



    1912 PRINT A(1), A(2), A(3)
    1915 PRINT A(4), A(5), A(6)


    1917 PRINT A(7), A(8), A(9)



    1939 PRINT A(10), M, JJJJ


1999 NEXT JJJJ

This computer program was run with qb64v1000-win [8]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31955 is shown below.

-.5707221320112302                   -.6818069499842895                                 -.7022100760176984                  
-.7055106298951845                   -.7049061557290275                                 -.7014966070306247                  
-.691889322356902                     -.6657965144115334                                 -.5960351090279503

-.416412257529033                               -2.906452856166197D-11                          -31955

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [8], the wall-clock time for obtaining the output through JJJJ= -31955 was 10 seconds, not including "creating .EXE file" time.  

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[3] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[4] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[5] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[7] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[8] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[9] M. Ziani, F. Guyomarc'h, An Autoadaptive Limited Memory Broyden's Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211.  web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

No comments:

Post a Comment