Monday, January 11, 2016

The Domino Method of Nonlinear Integer/Continuous/Discrete Programming Seeking To Solve a Case of Broyden's Tridiagonal Simultaneous Equations

Jsun Yui Wong

The following computer program seeks to solve the Broyden case on page 23 of La Cruz, Martinez, and Raydan [7, p. 23, Test function 11, Broyden Tridiagonal function]--http://www.ime.unicamp.br/~martinez/lmrreport.pdf.  See also Broyden [1, p. 587], More, Garbow, Hillstrom [10, page 28], and Cao [3, p. 7]--http://dx.doi.org/10.1155/2014/251587.  The present case has 40 nonlinear equations and 40 unknowns.

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(32768), A(32768), L(32768), K(32768)

5 FOR JJJJ = -32000 TO 32000

    14 RANDOMIZE JJJJ


    16 M = -1D+50

    91 FOR KK = 1 TO 40


        94 A(KK) = -RND


    95 NEXT KK

    128 FOR I = 1 TO 10000000 STEP 1


        129 FOR K = 1 TO 40


            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 40)

            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1

        191 NEXT IPP


        555 X(2) = ((3 - .5 * X(1)) * X(1) + 1) / 2


        605 FOR J44 = 2 TO 39


            609 X(J44 + 1) = (-X(J44 - 1) + (3 - .5 * X(J44)) * X(J44) + 1) / 2


        611 NEXT J44
        651 FOR j47 = 1 TO 40


            666 IF ABS(X(j47)) > 40 THEN 1670


        688 NEXT j47


        699 P1 = -X(39) + (3 - .5 * X(40)) * X(40) + 1


        999 P = -ABS(P1)


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 40


            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P
        1666 REM  PRINT A(1), A(2), A(40), M, JJJJ
        1668 IF M > -.000001 THEN 1912


    1670 NEXT I
    1890 IF M < -1 THEN 1999


    1912 PRINT A(1), A(2), A(3)


    1917 PRINT A(4), A(5), A(6)
    1939 PRINT A(7), A(8), A(9)
    1940 PRINT A(10), A(11), A(12)

    1941 PRINT A(13), A(14), A(15)
    1942 PRINT A(16), A(17), A(18)

    1943 PRINT A(19), A(20), A(21)


    1944 PRINT A(22), A(23), A(24)

    1945 PRINT A(25), A(26), A(27)
    1946 PRINT A(28), A(29), A(30)
    1948 PRINT A(31), A(32), A(33)


    1949 PRINT A(34), A(35), A(36)


    1950 PRINT A(37), A(38), A(39)


    1952 PRINT A(40), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [15]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31970 is shown below.

-1.032392026048492              -1.315046362934866           -1.388710265545107
-1.40767126725782                -1.412536367279982           -1.413783664513196
-1.414103375640894              -1.414185320454485           -1.41420632300852
-1.414211705294856              -1.414213083286271           -1.414213433516494
-1.414213517516233              -1.414213527797511           -1.41421350848952
-1.414213460734085              -1.414213364986737           -1.414213177539841
-1.414212811698226              -1.414212097970268           -1.414210705617657
-1.414207989412248              -1.414202690638903           -1.41419235380481
-1.414172188777757              -1.41413285114235             -1.414056112494643
-1.413906415491656              -1.413614404932278           -1.413044821110598
-1.41193394581663                -1.409767875006974           -1.405546204952566
-1.397325403489502              -1.381344573567245           -1.350382366337035
-1.290784396550433              -1.177516501251648           -.9675188312822373
-.5965431685189682              -4.255022799226627D-05           -31970    

 Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [15], the wall-clock time for obtaining the output through JJJJ= -31970 was 23 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] C. G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous Equations, Mathematics of Computation, Vol. 19, Number 92, pp. 577-593, 1965.

[2] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[3] Huiping Cao, Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[4] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.
 
[5] Rendong Ge, Lijun Liu, Yi Xu, Neural Network Approach for Solving Singular Convex Optimization with Bounded Variables, Open Journal of Applied Sciences, 2013, 3, 285-292.  Published Online July 2013.  http://www.scirp.org/journal/ojapps

[6] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[7] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf

[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[9] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[10]  J. J. More, B. S. Garbow, K. E. Hillstrom (1981) Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software, Vol. 7, Pages 17-41.

[11] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[12]  NAG, NAG Fortran Library Routine Document, C05PDF/C05PDA.
http://www.nag.com/numeric/FL/manual/pdf/C05/c05pdf.pdf

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[14] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[15] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[16] M. Ziani, F. Guyomarc’h, An Autoadaptive Limited Memory Broyden’s Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211. web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

No comments:

Post a Comment