Wednesday, April 6, 2016

A General Computer Program Applied to Schittkowski’s Test Problem 395 but with 10000 Unknowns instead of 50 Unknowns

Jsun Yui Wong

The computer program listed below seeks to solve Schittkowski’s last test problem [16, p. 213, Test Problem 395] but with 10000 unknowns instead of 50 unknowns. The source of this Test Problem 395 is given in Schittkowski [16]. Thus, the problem here is to minimize

10000
SIGMA i*(X(i)^2+X(i)^4 )
i=1

subject to

10000
SIGMA X(i)^2 =1.
i=1

0 REM DEFDBL A-Z
1 DEFINT J, K, B
2 DIM A(10000), X(10000)
88 FOR JJJJ = -32000 TO 32000
    89 RANDOMIZE JJJJ
    90 M = -3D+300

    110 FOR J44 = 1 TO 10000


        112 A(J44) = RND * .01


    114 NEXT J44
    128 FOR I = 1 TO 100000


        129 FOR KKQQ = 1 TO 10000
            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        139 FOR IPP = 1 TO FIX(1 + RND * 3)
            140 B = 1 + FIX(RND * 10000)


            183 R = (1 - RND * 2) * A(B)


            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1
        199 NEXT IPP


        400 SONE = 0
        401 FOR J44 = 2 TO 10000
            403 SONE = SONE + X(J44) ^ 2
        404 NEXT J44
        405 IF (1 - SONE) < .0000001 THEN 1670


        406 X(1) = (1 - SONE) ^ (1 / 2)


        410 STWO = 0
        411 FOR J44 = 1 TO 10000
            413 STWO = STWO + J44 * (X(J44) ^ 2 + X(J44) ^ 4)
        415 NEXT J44
        457 PD1 = -STWO


        1111 IF PD1 <= M THEN 1670
        1452 M = PD1
        1454 FOR KLX = 1 TO 10000

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX


        1557 GOTO 128


    1670 NEXT I
    1889 REM  IF M < -999999999# THEN 1999

    1935 PRINT A(1), A(2), A(3), A(4), A(5)

    1937 PRINT A(9996), A(9997), A(9998), A(9999), A(10000)

    1939 PRINT M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [17]. Copied by hand from the screen, the computer program’s completer output through JJJJ= -31994 is shown below.

1   0   0   0   0
0   0   0   0   0
-2   -32000

.911705   .4108454   0   0   0
0   0   0   0   0
-1.91668   -31999

.9999998   0   6.966768E-04   0  
0
0   0   0   0   0
-2   -31998

.9231066   .384544   0   0   0
0   0   0   0   0
-1.917726   -31997

.9122139   .4097142   0   0   0
0   0   0   0   0
-1.916671   -31996

.9127767   .4084589   0   0   0
0   0   0   0   0
-1.916667   -31995

1   0   0   0   0
0   0   0   0   0
-2   -31994

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 10000 unknowns, only the ten A's of line 1935 and line 1937 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [17], the wall-clock time for obtaining the output through JJJJ= -31994 was four hours.    

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] C. G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous Equations, Mathematics of Computation, Vol. 19, Number 92, pp. 577-593, 1965.

[2] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[3] Huiping Cao, Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587.

[4] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[5] Rendong Ge, Lijun Liu, Yi Xu, Neural Network Approach for Solving Singular Convex Optimization with Bounded Variables, Open Journal of Applied Sciences, 2013, 3, 285-292. Published Online July 2013. http://www.scirp.org/journal/ojapps.

[6] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am.

[7] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.

[8] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[9] Guangye Li (1989) Successive column correction algorithms for solving sparse nonlinear systems of equations, Mathematical Programming, 43, pp. 187-207. .

[10] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[11 J. J. More, B. S. Garbow, K. E. Hillstrom (1981) Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software, Vol. 7, Pages 17-41.

[12] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf.

[13] NAG, NAG Fortran Library Routine Document, C05PDF/C05PDA.
http://www.nag.com/numeric/FL/manual/pdf/C05/c05pdf.pdf.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[15] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[16]  K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1987.

[17] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[18] M. Ziani, F. Guyomarc’h, An Autoadaptive Limited Memory Broyden’s Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211. web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf.

No comments:

Post a Comment