Thursday, June 28, 2018

Everything You Need To Solve Your Mixed-Integer Nonlinear Programming (MINLP) Problems Is Here

Jsun Yui Wong

The computer program listed below seeks to solve the following mixed-integer nonlinear programming problem from Dhingra [13, pp. 577-578], Deep et al. [12, p. 517, Problem 18], and  Liu and Qin [27, p. 2054, Problem 3]:

Maximize      (1 - (1 - X(5)) ^ X(1)) * (1 - (1 - X(6)) ^ X(2)) * (1 - (1 - X(7)) ^ X(3)) * (1 - (1 - X(8)) ^ X(4))

subject to

         1 * X(1) ^ 2 + 2 * X(2) ^ 2 + 3 * X(3) ^ 2 + 2 * X(4) ^ 2<=250

         (1 / 10 ^ 5) * (-1000 / LOG(X(5))) ^ 1.5 * (X(1) + EXP(X(1) / 4)) + (2.3 / 10 ^ 5) * (-1000 / LOG(X(6))) ^ 1.5 * (X(2) + EXP(X(2) / 4)) + (.3 / 10 ^ 5) * (-1000 / LOG(X(7))) ^ 1.5 * (X(3) + EXP(X(3) / 4)) + (2.3 / 10 ^ 5) * (-1000 / LOG(X(8))) ^ 1.5 * (X(4) + EXP(X(4) / 4))<=400

         6 * X(1) * EXP(X(1) / 4) + (6) * X(2) * EXP(X(2) / 4) + (8) * X(3) * EXP(X(3) / 4) + (7) * X(4) * EXP(X(4) / 4)<=500

            1<= X(i) <= 10, i=1, 2, 3, 4

X(1) through X(4) are integer variables

.5<= X(5), X(6), X(7), X(8)<=.999999.

 X(9) through X(11) below are slack variables added. 

The sequence of line 341 through line 346 aims to get domino effect.

The formulation above has the operating time = 1000 hours (see above and see line 346 below),  which comes from Dhingra [13,  p. 578, Table 1], whereas the operating time (T) of the preceding paper is 100 hours; this 100 hours comes from Deep et al.  [12,  p. 517].


0 DEFDBL A-Z

1 DEFINT K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J44(2002), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(22), CC(20), RR(20), WW(20)

81 FOR JJJJ = -32000 TO 32000


    89 RANDOMIZE JJJJ
    90 M = -3E+30

    95 FOR J44 = 1 TO 4

        97 A(J44) = FIX(1 + RND * 10)

    99 NEXT J44

    115 FOR J44 = 5 TO 8

        117 A(J44) = .5 + RND * .499999


    119 NEXT J44

    128 FOR I = 1 TO 20000



        129 FOR KKQQ = 1 TO 8
            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        151 FOR IPP = 1 TO FIX(1 + RND * 3)



            153 j = 1 + FIX(RND * 8)
            154 REM GOTO 164
            155 REM IF j > 4.5 THEN GOTO 156 ELSE GOTO 164

            156 r = (1 - RND * 2) * A(j)
            158 X(j) = A(j) + (RND ^ (RND * 10)) * r

            161 GOTO 169


            164 IF RND < .5 THEN X(j) = A(j) - 1 ELSE X(j) = A(j) + 1


        169 NEXT IPP
        326 FOR J44 = 1 TO 4

            327 X(J44) = INT(X(J44))

            328 IF X(J44) < 1 THEN 1670

            329 IF X(J44) > 10 THEN 1670
        331 NEXT J44

        336 FOR J44 = 5 TO 8


            338 IF X(J44) < .5## THEN 1670

            339 IF X(J44) > .999999## THEN 1670
        340 NEXT J44


        341 X(9) = 250 - 1 * X(1) ^ 2 - 2 * X(2) ^ 2 - 3 * X(3) ^ 2 - 2 * X(4) ^ 2


        343 X(10) = 500 - 6 * X(1) * EXP(X(1) / 4) - (6) * X(2) * EXP(X(2) / 4) - (8) * X(3) * EXP(X(3) / 4) - (7) * X(4) * EXP(X(4) / 4)


        346 X(11) = 400 - (1 / 10 ^ 5) * (-1000 / LOG(X(5))) ^ 1.5 * (X(1) + EXP(X(1) / 4)) - (2.3 / 10 ^ 5) * (-1000 / LOG(X(6))) ^ 1.5 * (X(2) + EXP(X(2) / 4)) - (.3 / 10 ^ 5) * (-1000 / LOG(X(7))) ^ 1.5 * (X(3) + EXP(X(3) / 4)) - (2.3 / 10 ^ 5) * (-1000 / LOG(X(8))) ^ 1.5 * (X(4) + EXP(X(4) / 4))


        355 FOR J44 = 9 TO 11


            357 IF X(J44) < 0 THEN X(J44) = X(J44) ELSE X(J44) = 0

        359 NEXT J44


        393 PDU = (1 - (1 - X(5)) ^ X(1)) * (1 - (1 - X(6)) ^ X(2)) * (1 - (1 - X(7)) ^ X(3)) * (1 - (1 - X(8)) ^ X(4)) + 1000000 * (X(9) + X(10) + X(11))

        466 P = PDU
        1111 IF P <= M THEN 1670
        1452 M = P
        1454 FOR KLX = 1 TO 11

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX


        1557 GOTO 128
    1670 NEXT I
    1889 IF M < .9999545 THEN 1999


    1904 PRINT A(1), A(2), A(3)
    1905 PRINT A(4), A(5), A(6)
    1906 PRINT A(7), A(8), A(9)
    1907 PRINT A(10), A(11)

    1909 PRINT M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with QB64v1000-win [39].  The complete output through JJJJ= -31931 is shown below:

5       5       4
6         .9028407381597928      .8878405733015752
.9485972637679766     .8487191793558045         0
0         0
.999954625226262               -31997

5       5       4
6       .8995776108129475      .8884690670098343
.9479772095053202      .851707452609658            0
0       0
.9999545713940635                   -31931

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [39], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31931 was 54 seconds, not including the time for “Creating .EXE file” (62 seconds, total, including the time for “Creating .EXE file” ).   One can compare the computational results above with those in Dhingra [13, p. 578, Table 2], in Deep et al. [12, p. 517, Problem-18], and in Liu and Qin [27, p. 2054, Table IX]:


Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem.  European Journal of Operational Research 173 (2006), pp. 508-518.

[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem.  Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem.  Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem.  Computers and Operations Research 39 (2012), pp. 3325-3330.

[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes.  INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[6] Miguel F. Anjos (2012), FLPLIB--Facility Layout Database.  Retrieved on September 25 2012 from www.gerad.ca/files/Sites/Anjos/indexFR.html

[7] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study.  Princeton and Oxford: Princeton University Press, 2006.

[8] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming.  New York: John Wiley and Sons, Inc., 1968.

[9] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost.  Operations Research, Vol. 14, No. 1 (Jan. - Feb., 1966), pp. 52-58.

[10]  Lino Costa, Pedro (2001),  Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[11] George B. Dantzig, Discrete-Variable Extremum Problems.  Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[12]  Kusum Deep, Krishna Pratap Singh, M. L.  Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems.  Applied Mathematics and Computation 212 (2009) 505-518.

[13]  Anoop K. Dhingra (1992).  Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[14]  C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis.  Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[15] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems.  Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[16] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms.  Springer-Verlag, 1990.

[17] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012.  Retrieved on September 14 2012 from Google search.

[18]  Ignacio E. Grossmann.  Overview of Mixed-integer Nonlinear Programming.  https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[19] David M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[20] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes.  Berlin: Springer-Verlag, 1981.

[21] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout.  Les Cahiers du GERAD.  Retrieved from www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[22] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout.  Retrieved from www.optimization-online.org./DB_HTML/2012/04/3432.html

[23] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey--Editors, 50 Years of Integer Programming 1958-2008.  Berlin: Springer, 2010.

[24]  Adhe Kania, Kuntjoro Adji Sidarto (2016).  Solving mixed integer  nonlinear programming problems using spiral dynamics optimization algorithm.  AIP Conference Proceedings 1716, 020004 (2016).
https://doi.org/10.1063/1.4942987.  Published by the American Institute of Physics.

[25]  A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems.  Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[26] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[27]  Yubao Liu, Guihe Qin (2014),  A hybrid  TS-DE algorithm for reliability redundancy optimization problems, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[28]  Rein Luus (1975).  Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[29]  MathWorks, Mixed Integer Optimization.  https://www.mathworks.com/help/gads;mixed-integer-optimization.html

[30] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[31] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[32] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP).  https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[33] Panos Y. Papalambros,  Douglass J. Wilde, Principles of Optimal Design, Second Edition.  Cambridge University Press, 2000.

[34] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design.  Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[35] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm.    Operations Research, Vol. 17, No. 5 (Sep. - Oct., 1969), pp. 812-826.

[36] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes' Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization.  Journal of Optimization Theory and Applications,  Vol.15, No. 3, pp. 285-309, 1975.

[37]  Hardi Tambunan, Herman Mawengkang (2016).  Solving Mixed Integer Non-Linear Programming Using Active Constraint.  Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281.  http://www.ripublication.com/gjpam.htm

[38] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011).  Solving mixed-integer nonlinear programming problems using improved genetic algorithms.  Korean  Joutnal of  Chemical Engineering  28 (1):32-40 January 2011.

[39]  Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[40] Jsun Yui Wong (2009, July 18).  An Integer Programming Computer Program Applied to One-Dimensional Space Allocation.  Retrieved from http://wongsllllblog.blogspot.com/2009/07/

[41] Jsun Yui Wong (2009, December 18).  A Heuristic Nonlinear Integer Solver Applied to a Problem of Assignment of Facilities to Locations.  Retrieved from http://wongsnewnewblog.blogspot.ca/2009/12/

[42] Jsun Yui Wong (2011, July 23).  A General Nonlinear Integer/Discrete/Continuous Programming Solver Applied to Three Instances of the Haverly Pooling Problem.  Retrieved from http://myblogsubstance.typepad.com/substance/2011/07/

[43] Jsun Yui Wong (2011 July 27).   A General Nonlinear Integer/Discrete/Continuous Programming Solver Applied to an Alkylation-Process Model, Sixth Edition.  Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2011/07/27/

[44] Jsun Yui Wong (2012, April 24).  The Domino Method of General Integer Nonlinear Programming  Applied to Problem 10 of Lawler and Bell.  Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/4/24/

[45] Jsun Yui Wong (2012, September 27).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Linear Ordering Problem with 22 Facilities.  Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/9/27/

[46]  Jsun Yui Wong (2013 January 10).  The Domino Method of General Integer Nonlinear Programming Applied to Alkylation Process Optimization.  http://myblogsubstance.typepad.com/substance/2013/01/



No comments:

Post a Comment