Tuesday, August 21, 2018

Minimization of the Surface Roughness of an Alloy Using the (Present) MINLP Solver

Jsun Yui Wong

The computer program listed below seeks to solve the following "optimization problem of minimization of the surface roughness in machining AI Alloy SIC," Mellal and Williams [36, p. 46]:
       
Minimize   .72412 + .00325 * X(1) - .19694 * X(2) + 4.19915 * X(3) - .18753 * X(4) - .000018 * X(1) ^ 2 - 3.42419 * X(3) ^ 2 + 3.33125 * X(2) * X(3) - .56484 * X(3) * X(4)
   
subject to

            90<= X(1) <=210   
 
            .15<= X(2) <=.25

            .20<= X(3) <=.60

            .40<= X(4) <=1.20.


0 DEFDBL A-Z

1 DEFINT K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J44(2002), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(22), CC(20), RR(20), WW(20), AL(50), SW(50), SV(50)


81 FOR JJJJ = -32000 TO 32000

    89 RANDOMIZE JJJJ
    90 M = -3E+30

    122 A(1) = 90 + RND * 120


    124 A(2) = .15 + RND * .10
    126 A(3) = .20 + RND * .40

    127 A(4) = .40 + RND * .80     


    128 FOR I = 1 TO 1000

        129 FOR KKQQ = 1 TO 4
            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        151 FOR IPP = 1 TO FIX(1 + RND * 2)


            153 J = 1 + FIX(RND * 4)

            156 r = (1 - RND * 2) * A(J)
            158 X(J) = A(J) + (RND ^ (RND * 10)) * r

        169 NEXT IPP
        233 IF X(1) < 90## THEN 1670

        234 IF X(1) > 210## THEN 1670


        236 IF X(2) < .15## THEN 1670

        237 IF X(2) > .25## THEN 1670


        241 IF X(3) < .20## THEN 1670

        242 IF X(3) > .60## THEN 1670


        245 IF X(4) < .4## THEN 1670

        246 IF X(4) > 1.20## THEN 1670
     
        447 PDU = -.72412 - .00325 * X(1) + .19694 * X(2) - 4.19915 * X(3) + .18753 * X(4) + .000018 * X(1) ^ 2 + 3.42419 * X(3) ^ 2 - 3.33125 * X(2) * X(3) + .56484 * X(3) * X(4)

        466 P = PDU
        1111 IF P <= M THEN 1670
        1452 M = P
        1454 FOR KLX = 1 TO 4

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX


        1557 GOTO 128
    1670 NEXT I
    1889 IF M < -33333333 THEN 1999

        1904 PRINT A(1), A(2), A(3), A(4), M, JJJJ

1999 NEXT JJJJ


This BASIC computer program was run with QB64v1000-win [49].  The complete output of a single run through JJJJ= -31999 is shown below: 

209.9999999991342    .1500000000000166     .2000000000000256
1.19999999999999     -1.025481300003811   -32000

209.999999998173     .1500000000000021     .2000000000000246
1.199999999999485   -1.025481300008095    -31999

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [49], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31999 was 1 or 2 seconds, not including the time for “Creating .EXE file."  One can compare the computational results above with those in Mellal and Williams [36, p. 46, Table 5].


Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem.  European Journal of Operational Research 173 (2006), pp. 508-518.

[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem.  Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem.  Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem.  Computers and Operations Research 39 (2012), pp. 3325-3330.

[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes.  INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[6] Miguel F. Anjos (2012), FLPLIB--Facility Layout Database.  Retrieved on September 25 2012 from www.gerad.ca/files/Sites/Anjos/indexFR.html

[7] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study.  Princeton and Oxford: Princeton University Press, 2006.

[8] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming.  New York: John Wiley and Sons, Inc., 1968.

[9] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost.  Operations Research, Vol. 14, No. 1 (Jan. - Feb., 1966), pp. 52-58.

[10]  Ta-Cheng Chen (2006).  IAs based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[11]  Leandro dos Santos Coelho (2009),  Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[12]  William Conley (1981).  Optimization:  A Simplified Approach.  Published 1981 by Petrocelli Books in New York.

[13]  Lino Costa, Pedro (2001).  Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.

[14] George B. Dantzig, Discrete-Variable Extremum Problems.  Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[15]  Kusum Deep, Krishna Pratap Singh, M. L.  Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems.  Applied Mathematics and Computation 212 (2009) 505-518.

[16]  Anoop K. Dhingra (1992).  Optimal apportionment of reliability and redundancy in series systems under multiple objections. IEEE Transactions on Reliability, Vol. 41, No. 4, 1992 December, pp. 576-582.

[17]  C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis.  Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.

[18] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems.  Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.

[19] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms.  Springer-Verlag, 1990.

[20] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012.  Retrieved on September 14 2012 from Google search.

[21]  Ignacio E. Grossmann.  Overview of Mixed-integer Nonlinear Programming.  https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf

[22] David M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[23] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes.  Berlin: Springer-Verlag, 1981.

[24] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout.  Les Cahiers du GERAD.  Retrieved from www.gerad.ca/fichiers/cahiers/G-2012-03.pdf

[25] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout.  Retrieved from www.optimization-online.org./DB_HTML/2012/04/3432.html

[26] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey--Editors, 50 Years of Integer Programming 1958-2008.  Berlin: Springer, 2010.

[27]  Adhe Kania, Kuntjoro Adji Sidarto (2016).  Solving mixed integer  nonlinear programming problems using spiral dynamics optimization algorithm.  AIP Conference Proceedings 1716, 020004 (2016).  https://doi.org/10.1063/1.4942987.  Published by the American Institute of Physics.

[28]  A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems.  Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[29] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[30]  Gia-Shi Liu (2006),  A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.

[31]  Yubao Liu, Guihe Qin (2014),  A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.

[32]  Rein Luus (1975).  Optimization of System Reliability by a New Nonlinear Integer Programming Procedure. IEEE Transactions on Reliability, Vol. R-24, No. 1, April 1975, pp. 14-16.

[33]  F. Masedu, M Angelozzi (2008).  Modelling optimum fraction assignment in the 4X100 m relay race by integer linear programming.   Italian Journal of Sports Sciences, Anno 13, No. 1, 2008, pp. 74-77.

[34]  MathWorks, Mixed Integer Optimization.  https://www.mathworks.com/help/gads;mixed-integer-optimization.html

[35]  Mohamed Arezki Mellal, Enrico Zio (2016).  A Guided Stochastic Fractal Search Approach for System Reliability Optimization.  Reliability Engineering and System Safety 152 (2016) 213-227.

[36]  Mohamed Arezki Mellal, Edward J. Williams (2017).  A survey on ant colony optimization, particle swarm optimization,and cuckoo algorithms.  In P. Vasant, S. Z. Alparslan-Gok, G. W. Weber (editors), in Handbook of Research on Emergent Applications of Optimization Algorithms. Published 2017, IGI Global, USA.     

[37]  Mohamed Arezki Mellal, Edward J. Williams (2018).  Large-scale reliability-redundancy allocation optimization problem using three soft computing methods.  In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering.  Published July 2018, CRC Press.   

[38] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[39] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.

[40] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.

[41] OPTI Toolbox, Mixed Integer Nonlinear Program (MINLP).  https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MINLP

[42] Panos Y. Papalambros,  Douglass J. Wilde, Principles of Optimal Design, Second Edition.  Cambridge University Press, 2000.

[43] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design.  Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.

[44] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm.    Operations Research, Vol. 17, No. 5 (Sep. - Oct., 1969), pp. 812-826.

[45] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes' Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization.  Journal of Optimization Theory and Applications,  Vol.15, No. 3, pp. 285-309, 1975.

[46]  Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977).  Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[47]  Hardi Tambunan, Herman Mawengkang (2016).  Solving Mixed Integer Non-Linear Programming Using Active Constraint.  Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281.  http://www.ripublication.com/gjpam.htm

[48] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011).  Solving mixed-integer nonlinear programming problems using improved genetic algorithms.  Korean  Joutnal of  Chemical Engineering  28 (1):32-40 January 2011.

[49]  Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[50]  Zhongkai Xu, Way Kuo, Hsin-Hui Lin (1990).  Optimization Limits in Improving System Reliability. IEEE Transactions on Reliability, Vol. 39, No. 1, 1990 April, pp. 51-60.

[51]  ZHANG HongQi, HU ZiangTao, SHAO XiaoDong, LI ZiCheng, WANG YuHui  (November 2013).  IPSO-based hybrid approaches for reliability-redundany allocation problems.  SCIENCE CHINA Technologial Sciences, November 2013, Vol. 56, No. 11:  2854-2864.

No comments:

Post a Comment