Sunday, March 9, 2025

Computer program to solve nonlinear/linear fractional programming problems: an illustration

 



Computer program to solve nonlinear/linear fractional programming problems:  an illustration  

Jsun Yui Wong


Similar to the computer program of the preceding paper, the computer program listed below aims to solve directly the following fractional programming problem based on Jaberipour and Khorram [42, Example 1, p. 738] and Raouf and Hezam [73, Problem f10, page 5 of 10]: 


 Maximize        ((13 * X(1) + 13 * X(2) + 13) / (37 * X(1) + 73 * X(2) + 13)) ^ -1.4 * ((64 * X(1) - 18 * X(2) + 39) / (13 * X(1) + 26 * X(2) + 13)) ^ 1.2 - ((X(1) + 2 * X(2) + 5 * X(3) + 50) / (X(1) + 5 * X(2) + 5 * X(3) + 50)) ^ .5 * ((X(1) + 2 * X(2) + 4 * X(3) + 50) / (5 * X(2) + 4 * X(3) + 50)) ^ 1.1

subject to

         2 * X(1) + X(2) + 5 * X(3) <= 10 

         5 * X(1)  - 3* X(2)  = 3 

        1.5  <= X(1) <=  3   

       X(1),  X(2),  X(3) >= 0. 



0 DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    87 RANDOMIZE JJJJ

    88 M = -3D+30

    117 FOR J44 = 1 TO 3


        121 A(J44) = (1 + (RND * 3))


    126 NEXT J44

    127 FOR I = 1 TO 10000


        129 FOR KKQQ = 1 TO 3

            130 X(KKQQ) = A(KKQQ)

        131 NEXT KKQQ

        139 FOR IPP = 1 TO FIX(1 + RND * 3)


            140 B = 1 + FIX(RND * 3)

            156 IF RND < .5 THEN 160 ELSE GOTO 167

            160 r = (1 - RND * 2) * A(B)

            164 X(B) = A(B) + (RND ^ (RND * 15)) * r

            166 GOTO 168

            167 IF RND < .5 THEN X(B) = A(B) - FIX(RND * 2) ELSE X(B) = A(B) + FIX(RND * 2)

        168 NEXT IPP


        186 FOR J44 = 1 TO 3

            188 REM    X(J44) = INT(X(J44))


        189 NEXT J44


        422 FOR J44 = 1 TO 3

            435 REM

            436 REM


        447 NEXT J44

        451 X(1) = (3 + 3 * X(2)) / 5

        452 IF X(1) < 0 THEN 1670


        453 IF X(2) < 0 THEN 1670


        454 IF X(3) < 0 THEN 1670


        456 IF X(1) < 1.5 THEN 1670


        457 IF X(1) > 3 THEN 1670


        464 IF 2 * X(1) + X(2) + 5 * X(3) > 10 THEN 1670


        621 IF (X(1) + 2 * X(2) + 5 * X(3) + 50) / (X(1) + 5 * X(2) + 5 * X(3) + 50) < 0 THEN 1670



        623 P = ((13 * X(1) + 13 * X(2) + 13) / (37 * X(1) + 73 * X(2) + 13)) ^ -1.4 * ((64 * X(1) - 18 * X(2) + 39) / (13 * X(1) + 26 * X(2) + 13)) ^ 1.2 - ((X(1) + 2 * X(2) + 5 * X(3) + 50) / (X(1) + 5 * X(2) + 5 * X(3) + 50)) ^ .5 * ((X(1) + 2 * X(2) + 4 * X(3) + 50) / (5 * X(2) + 4 * X(3) + 50)) ^ 1.1


        1111 IF P <= M THEN 1670

        1452 M = P

        1454 FOR KLX = 1 TO 3

            1455 A(KLX) = X(KLX)

        1456 NEXT KLX

    1670 NEXT I


    1777 IF M < -999999 THEN 1999


    1904 PRINT A(1), A(2), A(3), M, JJJJ     


1999 NEXT JJJJ


This computer program was run with qb64v1000-win [104]. Its complete output through 

JJJJ=-32000 is shown below.  GW-BASIC also can handle this computer program.


1.499999940395465      1.499999900659180      3.848985065144648D-15

8.279865665019552      -32000


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with QB64v1000-win [104], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -32000 was one second, counting from “Starting program…”.  Please see the computational results in Jaberipour and Khorram [42] and  Raouf and Hezam [73, Problem f10, p. 5 of 10].    

All computational results presented above were obtained from the following computer system:

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz 2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.

[3]  Math Admiral (July 12,  2022), How-to-solve-non-linear-system-of-four-equations-with-four-variables

https://math.stackexchange.com/questions/4491203/how-to-solve-non-linear-system-of-four-equations-with-four-variables

[4] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[5] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[6] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[7] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[8] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[8] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[9] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[10] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[11] Dana H. Ballard, C. O. Jelinek, R. Schinzinger (November 1972). An algorithm for the solution of constrained generalised polynomial programming problems, The Computer Journal, 17(3): 261-266.


[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton–Approximate nonlinear equations by sequence of linear equations–lecture 6. (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[ 14] Dennis L. Bricker, Jae Chul Choi (1995), Obtaining a feasible geometric programming primal solution, given a near-optimal dual solution, Engineering Optimization, 1995,

[15] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.

[16] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.

[17] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values. https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute values#Numerical Example


[18] Ching-Ter Chang (2005), On the mixed integer signomial programming problems, Applied Mathematics and Computation 170 (2005) pp. 1436-1451.

[19] Ching-Ter Chang (2006), Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research, volume 173, issue 2, 1 September 2006, pages 370-386.


[20] Ching-Ter Chang (2002), On the posynomial fractional programming problems, European Journal of Operational Research, 143 (2002) pp. 42-52.

[21] Ta-Cheng Chen (2006). As based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[22] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[23] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[24] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[25] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[27]  Ampon Dhamacharoen (2014), An efficient hybrid method for solving nonlinear equations, vol.263, June 2014, 59-68., J. of computational and applied mathematics.   

https://www.sciencedirect.com/science/article/pii/S0377042713006766


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.


[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.


[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.


[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values…

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf


[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.


[37] Mohammad Babul Hasan, Sumi Acharjee (2011), Solving LFP by converting it into a single LP, International Journal of Operations Research, vol. 8, no. 3, pp. 1-14 (2011).

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8…


[38] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.


[39] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.


[40] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems,

Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263


[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).


[42] M. Jaberipour, E. Khorram (2010), Solving the sum-of-ratios problemsby a harmony search algorithm, J. of Computational and Applied Mathematics 234 (2010).


[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44]  Jorge Donis del Alamo  (March 14 2017)  Easy and reliable method for solving four nonlinear equations

https://math.stackexchange.com/questions/2186612/easy-and-reliable-method-for-solving-four-nonlinear-equations

[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016). https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.

[48] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[49] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[50] Learncommunolizer. Germany Math Olympiad/A Nice Algebra Problem/How to solve for "a", "b" and "c" in this Problem ? Please see Youtube.

https://www.youtube.com/watch?v=kuWb5-GXfOk

[51] Han-Lin Li, Jung-Fa Tsai (2005). Treating free variables in generalized geometric global optimization programs. Journal of Global Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012). Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming. European Journal of Operational Research 216 (2012) 17-25.

[53] Ming-Hua Lin, Jung-Fa Tsai (2011). Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443


[54] C. S. Liu, S. N. Atluri (2008), A Novel time integration method for solving a large system of nonlinear algebraic equations, CMES Computer Modeling in Engineering and Sciences 31 (2) 71-83.


[55] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.


[57] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.


[58] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming

[59] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering

and System Safety 152 (2016) 213-227.


[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman. Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.


[64] Jaleh Shirin Nejad, Mansour Saraj , Sara Shokrolahi Yancheshmeh1, Fatemeh Kiany Harchegani (2024), Global optimization of mixed integer signomial fractional programming problems, Messure and Control (a journal), Sagepub.com/journals.


[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.


[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.


[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017). Comparison of algorithms for including equality constraints in signomial programming. ACDL Technical Report TR-2017-1. August 31 2017. pp.1-23.

One can get a Google view of this report.


[68] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.


[69] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.


[70] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.



[71] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf


[72] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining pr5cess using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.



[73]  O. A. Raouf, I. M. Hezam (2014), Solving fractional programming problems based on swarm intelligence, J. of Industrial Engineering International, volumn 10, article numer 56, (2014)



[75] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[76] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).


[77] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.


[78] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.

[79] J. R. Sharma, Puneet Gupta (31 October 2013 ). On some efficient techniques for solving systems of nonlinear equations, Advances in Numerical Analysis, Volume 2013, Article ID 252798, pp. 1-11, Hindawi Corporation.

[8o] J. R. Sharma, Puneet Gupta (2014 ). An efficient family of Traub-Steffensen-Type Methods for solving systems of nonlinear equations. Advances in Numerical Analysis, Volume 2014, Article ID 152187, 11 pages, Hindawi Corporation.

[81] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[82] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[83] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. – Oct., 1969), pp. 812-826.

[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. journal of computational design and engineering 5 (2018) 104-119.

[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006). An optimization approach for solving signomial discrete programming problems with free variables. Computers and Chemical Engineering 30 (2006) 1256-1263.

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) 10-19.

[89] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming problems with free variables. Journal of Global Optimization (2008) 42:39-49.

[90] Jung-Fa Tsai (2009). Treatng free variables in generalized geometric programming problems. Computers and Chemical Enginering 33 (2009) 239-243.

[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020). Global optimization for mixed-discrete structural design. Symmetry 2020, 12, 1529. One can get a Google view of this article. http://www.mdpi.com/journal/symmetry.

[92] Jung-Fa Tsai, Ming-Hua Lin (Summer 2011), An efficient efficient global approach for posynomial geometrical programming problems, INFORMS Journal on Computing, vol, 23, no. 3, summer 2011, pp. 483-492.

[93] Jung-Fa Tsai (2010), Global optimization for signomial discrete programming problems in engineering design, Engineering Optimization, 42(9), 833-843.

[94] Jung-Fa Tsai (2005), Global optimization of nonlinear fractional programming problems in engineering design, Engineering Optimization, 2005, 399-409.

[95] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.

[96] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[97] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.

[98] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.

[99] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017

[100] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[101] Chuanwei Wang,  Yiju Wang,  A superlinearly convergent projection method for constrained systems of nonlinear equations, J. of Global Optimization, 03 July 2008, Vol. 44,  283-296 (2009).

[102] T. Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011), Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[103] Eric  W. Weisstein, “Euler’s Sum of Powers Conjecture.” https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.

[104] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[105] Wayne L. Winston (2004), Operations Research–Applications and Algorithms, Fourtth Edition, Brooks/Cole–Thomson Learning, Belmont, California 94002. https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming

[106] G. Xu (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.


Thursday, March 6, 2025

Computer program to solve directly geometric programming problems

Computer program to solve directly geometric programming problems         

Jsun Yui Wong

The computer program listed below aims to solve directly the following geometric programming problem from Ravindrain, Phillips, and Solberg [75, page 577]:  

Maxinize

5 * X(1) ^ 2 - X(2) ^ 2 * X(3) ^ 4

subject to

 -5 * X(1) ^ 2 * X(2) ^ -2 + 3 * X(2) ^ -1 * X(3) >= 2

 X(i) >= 0,  i=1, 2, 3, 4.

One notes that line 619 below is 619 P = 5 * X(1) ^ 2 - X(2) ^ 2 * X(3) ^ 4.



0 REM   DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    87 RANDOMIZE JJJJ

    88 M = -3D+30

    117 FOR J44 = 1 TO 3

        121 A(J44) = 0 + RND * 5

    126 NEXT J44

    127 FOR I = 1 TO 100000


        129 FOR KKQQ = 1 TO 3


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 3)


            140 B = 1 + FIX(RND * 3)


            156 IF RND < .5 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            166 GOTO 168


            167 IF RND < .5 THEN X(B) = A(B) - FIX(RND * 2) ELSE X(B) = A(B) + FIX(RND * 2)


        168 NEXT IPP


        186 FOR J44 = 1 TO 3


            188 REM   X(J44) = INT(X(J44))


        189 NEXT J44


        422 FOR J44 = 1 TO 3


            435 IF X(J44) < 0 THEN 1670


            436 REM


        455 NEXT J44


        463 IF -5 * X(1) ^ 2 * X(2) ^ -2 + 3 * X(2) ^ -1 * X(3) < 2 THEN 1670


        619 P = 5 * X(1) ^ 2 - X(2) ^ 2 * X(3) ^ 4


        1111 IF P <= M THEN 1670

        1452 M = P

        1454 FOR KLX = 1 TO 3

            1455 A(KLX) = X(KLX)

        1456 NEXT KLX

    1670 NEXT I

    1777 IF M < .795 THEN 1999



    1904 PRINT A(1), A(2), A(3), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [104]. Its complete output in one run through JJJJ=-31981 is shown below.  GW-BASIC also can handle this computer program.


 .4858663       .4359888      1.193076         .7951868      -32000

 .4853731       .4460661      1.177617         .7952737      -31999

 .4899952       .4470636      1.193125         .795451        -31981


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with QB64v1000-win [104], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31981 was 6 seconds, counting from “Starting program…”.  Please see the computations in Ravindrain, Phillips, and Solberg [75, pp. 577-578]. 

All computational results presented above were obtained from the following computer system:

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz 2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Siby Abraham, Sugata Sanyal, Mukund Sanglikar (2010), Particle Swarm Optimisation Based Diophantine Equation Solver, Int. J. of Bio-Inspired Computation, 2 (2), 100-114, 2010.

[2] Siby Abraham, Sugata Sanyal, Mukund Sangrikar (2013), A Connectionist Network Approach to Find Numerical Solutions of Diophantine Equations, Int. J. of Engg. Science and Mgmt., Vol. III, Issue 1, January-June 2013.   

[3]  Math Admiral (July 12,  2022), How-to-solve-non-linear-system-of-four-equations-with-four-variables

https://math.stackexchange.com/questions/4491203/how-to-solve-non-linear-system-of-four-equations-with-four-variables

[4] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.

[5] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.

[6] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.

[7] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.

[8] Oscar Augusto, Bennis Fouad, Stephane Caro (2012). A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional, 2012 32 (3), pp.331-369.

[8] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.

[9] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.

[10] Ritu Arora, S. R. Arora (2015). A cutting plane approach for multi-objective integer indefinite quadratic programming problem: OPSEARCH of the Operational Research Society of India (April-June 2015), 52(2):367-381.

[11] Dana H. Ballard, C. O. Jelinek, R. Schinzinger (November 1972). An algorithm for the solution of constrained generalised polynomial programming problems, The Computer Journal, 17(3): 261-266.


[12 ] Ahmad Bazzi (January 20, 2022). Multidimensional Newton–Approximate nonlinear equations by sequence of linear equations–lecture 6. (Youtube is where I saw this work.)

http://bazziahmad.com/

[13] Madhulima Bhandari (24 February 2015). How to solve 6 nonlinear coupled equations with 6 unkowns by MATLAB?

https://mathworks.com/matlabcentral/answers/180104-how-to-solve-6-nonlinear-coupled-equations-with-6-unkowns-by-matlab

[ 14] Dennis L. Bricker, Jae Chul Choi (1995), Obtaining a feasible geometric programming primal solution, given a near-optimal dual solution, Engineering Optimization, 1995,

[15] Richard L. Burden, Douglas J. Faires, Annette M. Burden, Numerical Analysis, Tenth Edition, 2016, Cengage Learning.

[16] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. – Feb., 1966), pp. 52-58.

[17] Matthew Chan, Yillian Yin, Brian Amado, Peter Williams (December 21, 2020). Optimization with absolute values. https://optimization.cbe.cornell.edu//php?title=Optimization_with_absolute values#Numerical Example


[18] Ching-Ter Chang (2005), On the mixed integer signomial programming problems, Applied Mathematics and Computation 170 (2005) pp. 1436-1451.

[19] Ching-Ter Chang (2006), Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research, volume 173, issue 2, 1 September 2006, pages 370-386.


[20] Ching-Ter Chang (2002), On the posynomial fractional programming problems, European Journal of Operational Research, 143 (2002) pp. 42-52.

[21] Ta-Cheng Chen (2006). As based approach for reliability redundany allocation problems. Applied Mathematics and Computation 182 (2006) 1556-1567.

[22] Leandro dos Santos Coelho (2009), Self-Organizing Migrating Strategies Applied to Reliability-Redundany Optimization of Systems. IEEE Transactions on Reliability, Vol. 58, No. 3, 2009 September, pp. 501-519.

[23] William Conley (1981). Optimization: A Simplified Approach. Published 1981 by Petrocelli Books in New York.

[24] Lino Costa, Pedro (2001). Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering, Vol. 25, pp. 257-266, 2001.


[25] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.


[26] Kusum Deep, Krishna Pratap Singh, M. L. Kansal, C. Mohan (2009), A real coded genetic algorithm for solving integer and mixed integer optimization problems. Applied Mathematics and Computation 212 (2009) 505-518.

[27]  Ampon Dhamacharoen (2014), An efficient hybrid method for solving nonlinear equations, vol.263, June 2014, 59-68., J. of computational and applied mathematics.   

https://www.sciencedirect.com/science/article/pii/S0377042713006766


[28] R. J. Duffin, E. L. Peterson, C. Zener (1967), Geometric Programming. John Wiley, New York (1967).


[29] Joseph G. Ecker, Michael Kupferschmid (1988). Introduction to Operations Research, John Wiley & Sons, New York (1988).


[30] C. A. Floudas, A. R. Ciric (1989), Strategies for Overcoming Uncertainties in Heat Exchanger Network Synthesis. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1133-1152, 1989.


[31] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.


[32] C. A. Floudas, A. Aggarwal, A. R. Ciric (1989), Global Optimum Search for Nonconvex NLP and MINLP Problems. Computers and Chemical Engineering, Vol 13, No. 10, pp. 1117-1132, 1989.


[33] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.


[34] Benjamin Granger, Marta Yu, Kathleen Zhou (Date Presented: May 25, 2014), Optimization with absolute values. https://optimization.mccormick.northwestern.edu/index.php/Optimization_with_absolute_values…

[35] Ignacio E. Grossmann. Overview of Mixed-integer Nonlinear Programming. https://egon.cheme.cmu.edu/ewo/docs/EWOMINLPGrossmann.pdf


[36] R. Gupta, R. Malhotra (1995). Multi-criteria integer linear fractional programming problem, Optimization, 35:4, 373-389.


[37] Mohammad Babul Hasan, Sumi Acharjee (2011), Solving LFP by converting it into a single LP, International Journal of Operations Research, vol. 8, no. 3, pp. 1-14 (2011).

http://www.orstw.org.tw/ijor/vol8no3/1_Vol_8…


[38] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, Ninth Edition, McGraw Hill, Boston, 2010.


[39] Willi Hock, Klaus Schittkowski, Test Exalor signomiamples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.


[40] Xue-Ping Hou, Pei-Ping Shen, Yong-Qiang Chen, 2014, A global optimization algorithm for signomial geometric programming problems,

Abstract and Applied Analysis, vol. 2014, article ID 163263, 12 pages. Hindawi Publishing Corp., http://dx.doi.org/10.1155/2014/163263


[41] Sana Iftekhar, M. J. Ahsan, Qazi Mazhar Ali (2015). An optimum multivariate stratified sampling design. Research Journal of Mathematical and Statistical Sciences, vol. 3(1),10-14, January (2015).


[42] R. Israel, A Karush-Kuhn-Tucker Example

https://personal.math.ubc.ca/~israel/m340/kkk2.pdf


[43] Ekta Jain, Kalpana Dahiya, Vanita Verma (2018): Integer quadratic fractional programming problems with bounded variables, Annals of Operations Research (October 2018) 269: pp. 269-295.

[44]  Jorge Donis del Alamo  (March 14 2017)  Easy and reliable method for solving four nonlinear equations

https://math.stackexchange.com/questions/2186612/easy-and-reliable-method-for-solving-four-nonlinear-equations

[45] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey–Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.


[46] Adhe Kania, Kuntjoro Adji Sidarto (2016). Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conference Proceedings 1716, 020004 (2016). https://doi.org/10.1063/1.4942987. Published by the American Institute of Physics.


[47] Reena Kapoor, S. R. Arora (2006). Linearization of a 0-1 quadratic fractional programming problem: OPSEARCH of the Operational Research Society of India (2006), 43(2):190-207.

[48] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.

[49] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.

[50] Learncommunolizer. Germany Math Olympiad/A Nice Algebra Problem/How to solve for "a", "b" and "c" in this Problem ? Please see Youtube.

https://www.youtube.com/watch?v=kuWb5-GXfOk

[51] Han-Lin Li, Jung-Fa Tsai (2005). Treating free variables in generalized geometric global optimization programs. Journal of Global Optimization (2005) 33:1-13.

[52] Ming-Hua Lin, Jung-Fa Tsai (2012). Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming. European Journal of Operational Research 216 (2012) 17-25.

[53] Ming-Hua Lin, Jung-Fa Tsai (2011). Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12: 425-443


[54] F. H. F. Liu, C. C. Huang, Y. L. Yen (2000): Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal of Operational Research 126 (2000) 51-68.


[55] Gia-Shi Liu (2006), A combination method for reliability-redundancy optimization, Engineering Optimization, 38:04, 485-499.


[56] Yubao Liu, Guihe Qin (2014), A hybrid TS-DE algorithm for reliability redundancy optimization problem, Journal of Computers, 9, No. 9, September 2014, pp. 2050-2057.


[57] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.


[58] Costas D. Maranas, Christodoulos A. Floudas, Global Optimization in Generalized Geometric Programming, pp. 1-42. https://pennstate.pure.elsevier.com/en/publications/global-optimization-in-generalized-geometric-programming


[   ] mathworks::::::::::

https://www.mathworks.com/help/optim/ug/nonlinear-equations-problem-based.html


[59] Mohamed Arezki Mellal, Enrico Zio (2016). A Guided Stochastic Fractal Search Approach for System Reliability Optimization. Reliability Engineering

and System Safety 152 (2016) 213-227.


[60] Mohamed Arezki Mellal, Edward J. Williams (2018). Large-scale reliability-redundancy allocation optimization problem using three soft computing methods. In Mangey Ram, Editor, in Modeling and simulation based analysis in reliability engineering. Published July 2018, CRC Press.

[61] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.


[62] Riley Murray, Venkat Chandrasekaran, Adam Wierman. Signomial and polynomial optimization via relative entropy and partial dualization. [math.OC] 21 July 2019. eprint: arXve:1907.00814v2.


[63] Yuji Nakagawa, Mitsunori Hikita, Hiroshi Kamada (1984). Surrogate Constraints for Reliability Optimization Problems with Multiple Constraints. IEEE Transactions on Reliability, Vol. R-33, No. 4, October 1984, pp. 301-305.


[64] Jaleh Shirin Nejad, Mansour Saraj , Sara Shokrolahi Yancheshmeh1, Fatemeh Kiany Harchegani (2024), Global optimization of mixed integer signomial fractional programming problems, Messure and Control (a journal), Sagepub.com/journals.


[65] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research 16 (1968), pp. 150-173.


[66] A. K. Ojha, K. K. Biswal (2010). Multi-objective geometric programming problem with weighted mean method. (IJCSIS) International Journal of Computer Science and Information Security, vol. 7, no. 2, pp. 82-86, 2010.


[67] Max M. J. Opgenoord, Brian S. Cohn, Warren W. Hobburg (August 31, 2017). Comparison of algorithms for including equality constraints in signomial programming. ACDL Technical Report TR-2017-1. August 31 2017. pp.1-23.

One can get a Google view of this report.


[68] R. R. Ota, J. C. Pati, A. K. Ojha (2019). Geometric programming technique to optimize power distribution system. OPSEARCH of the Operational Research Society of India (2019), 56, pp. 282-299.


[69] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design, Second Edition. Cambridge University Press, 2000.


[70] O. Perez, I. Amaya, R. Correa (2013), Numerical solution of certain exponential and nonlinear diophantine systems of equations by using a discrete particles swarm optimization algorithm. Applied Mathematics and Computation, Volume 225, 1 December, 2013, pp. 737-746.

[71] Yashpal Singh Raghav, Irfan Ali, Abdul Bari (2014) Multi-Objective Nonlinear Programming Problem Approach in Multivariate Stratified Sample Surveys in the Case of the Non-Response, Journal of Statitiscal Computation and Simulation 84:1, 22-36, doi:10.1080/00949655.2012.692370.

[72] Rajgopal, Geometric Programming. https://sites.pitt.edu/~jrclass/notes6.pdf


[73] R. V. Rao, P. J. Pawar, J. P. Davim (2010). Parameter optimization of ultrasonic machining pr5cess using nontraditional optimization algorihms. Materials and Manufacturing Processes, 25 (10),1120-1130.


[74] O. A. Raouf, I. M. Hezam (11 April 2014), Solving fractional programming problems based on swarm intelligence, Journal of Industrial Engineering International, vol. 10, article number 56 (2014).


 [75] A. Ravindrain, Don T. Phillips, James J. Solberg (1987), Operations Research, Second Edition, 1987, John Wiley & Sons, New York.  


[76] John Rice, Numerical Methods, Software, and Analysis, Second Edition, 1993, Academic Press.

[77] M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, J. of Optimization, Theory and Applications, 26 (2) 205-242 (1978).


[78] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.


[79] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim (2015). Water cycle algorithm for solvinfg constrained multi-objective optimization problems. Applied Soft Computing 27 (2015) 279-298.

[80] J. R. Sharma, Puneet Gupta (31 October 2013 ). On some efficient techniques for solving systems of nonlinear equations, Advances in Numerical Analysis, Volume 2013, Article ID 252798, pp. 1-11, Hindawi Corporation.

[81] J. R. Sharma, Puneet Gupta (2014 ). An efficient family of Traub-Steffensen-Type Methods for solving systems of nonlinear equations. Advances in Numerical Analysis, Volume 2014, Article ID 152187, 11 pages, Hindawi Corporation.

[82] Vikas Sharma (2012). Multiobjective integer nonlinear fractional programming problem: A cutting plane approach, OPSEARCH of the Operational Research Society of India (April-June 2012), 49(2):133-153.

[83] Vikas Sharma, Kalpana Dahiya, Vanita Verma (2017). A ranking algorithm for bi-objective quadratic fractional integer programming problems, Optimization, 66:11, 1913-1929.

[84] Hardi Tambunan, Herman Mawengkang (2016). Solving Mixed Integer Non-Linear Programming Using Active Constraint. Global Journal of Pure and Applied Mathematics, Volume 12, Number 6 (2016), pp. 5267-5281. http://www.ripublication.com/gjpam.htm

[85] Mohamed Tawhid, Vimal Savsani (2018). Epsilon-constraint heat transfer search (epsilon-HTS) algorithm for solvinfg multi-objective engineering design problems. journal of computational design and engineering 5 (2018) 104-119.

[86] Frank A. Tillman, Ching-Lai Hwang, Way Kuo (1977). Determining Component Reliability and Redundancy for Optimun System Reliability. IEEE Transactions on Reliability, Vol. R-26, No. 3, Augusr 1977, pp. 162-165.

[87] Jung-Fa Tsai, Ming-Hua Lin (2006). An optimization approach for solving signomial discrete programming problems with free variables. Computers and Chemical Engineering 30 (2006) 1256-1263.

[88] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) 10-19.

[89] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming problems with free variables. Journal of Global Optimization (2008) 42:39-49.

[90] Jung-Fa Tsai (2009). Treatng free variables in generalized geometric programming problems. Computers and Chemical Enginering 33 (2009) 239-243.

[91] Jung-Fa Tsai, Ming-Hua Lin, Duan-Yi Wen (16 September 2020). Global optimization for mixed-discrete structural design. Symmetry 2020, 12, 1529. One can get a Google view of this article. http://www.mdpi.com/journal/symmetry.

[92] Jung-Fa Tsai, Ming-Hua Lin (Summer 2011), An efficient efficient global approach for posynomial geometrical programming problems, INFORMS Journal on Computing, vol, 23, no. 3, summer 2011, pp. 483-492.

[93] Jung-Fa Tsai (2010), Global optimization for signomial discrete programming problems in engineering design, Engineering Optimization, 42(9), 833-843.

[94] Jung-Fa Tsai (2005), Global optimization of nonlinear fractional programming problems in engineering design, Engineering Optimization, 2005, 399-409.

[95] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990) 34:325-334.

[96] Tawan Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011). Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[97] Rahul Varshney, Mradula (2019 May 25). Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function, Journal of Statistical Computation and Simulation (2019) 89:13, pp. 2454-2467.

[98] Rahul Varshney, M. G. M. Khan, Ummatul Fatima, M. J. Ahsan (2015). Integer compromise allocation in multivariate stratified surveys, Annals of Operations Research (2015) 226:659-668.

[99] Rahul Varshney, Srikant Gupta, Irfan Ali (2017). An optimum multivariate-multiobjective stratified samplinr design: fuzzy programming approach. Pakistan Journal of Statistics and Operations Research, pp. 829-855, December 2017

[100] V. Verma, H. C. Bakhshi, M. C. Puri (1990) Ranking in integer linear fractional programming problems ZOR – Methods and Models of Operations Research (1990): 34:325-334.


[101] Chuanwei Wang,  Yiju Wang,  A superlinearly convergent projection method for constrained systems of nonlinear equations, J. of Global Optimization, 03 July 2008, Vol. 44,  283-296 (2009).

[102] T. Wasanapradit, Nalinee Mukdasanit, Nachol Chaiyaratana, Thongchai Srinophakun (2011), Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean Joutnal of Chemical Engineering 28 (1):32-40 January 2011.

[103] Eric  W. Weisstein, “Euler’s Sum of Powers Conjecture.” https://mathworld.wolfram.com/EulersSumofPowersConjecture.html.

[104] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[105] Wayne L. Winston (2004), Operations Research–Applications and Algorithms, Fourtth Edition, Brooks/Cole–Thomson Learning, Belmont, California 94002. https://optimization.mccormick.northwestern.edu/index.php/Geometric_Programming

[106] G. Xu (2014). Global optimization of signomial geometric programming problems, European J. of Operational Research 233 (2014) 500-510.

Sunday, March 2, 2025

Computer program to solve nonlinear fractional programming problems

 


Computer program to solve nonlinear fractional programming problems

Jsun Yui Wong

The computer program listed below seeks to solve the following problem from Jong [16, page 16/21, Problem 6]:  


Minimize ((X(1) ^ 2 + X(2) ^ 2 + 2 * X(1) * X(3)) / (X(3) ^ 2 + 5 * X(1) * X(2))) + ((X(1) + 1) / (X(1) ^ 2 - 2 * X(1) + X(2) ^ 2 - 8 * X(2) + 20))

subject to

X(1) ^ 2 + X(2) ^ 2 + X(3)<=5,

(X(1) - 2) ^ 2 + X(2) ^ 2 + X(3) ^ 2<=5,

1<=X(1) <=3,

1<=X(2) <= 3,

1<=X(3) <= 2.



0 REM  DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    87 RANDOMIZE JJJJ

    88 M = -3D+30

    117 FOR J44 = 1 TO 3


        121 A(J44) = 1 + RND * 2


    126 NEXT J44


    127 FOR I = 1 TO 5000


        129 FOR KKQQ = 1 TO 3


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 3)


            140 B = 1 + FIX(RND * 3)


            156 IF RND < .5 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            166 GOTO 168


            167 IF RND < .5 THEN X(B) = A(B) - FIX(RND * 2) ELSE X(B) = A(B) + FIX(RND * 2)


        168 NEXT IPP


        186 FOR J44 = 1 TO 3


            188 REM   X(J44) = INT(X(J44))


        189 NEXT J44


        201 IF X(1) < 1 THEN 1670

        203 IF X(1) > 3 THEN 1670

        211 IF X(2) < 1 THEN 1670

        213 IF X(2) > 3 THEN 1670

        217 IF X(3) < 1 THEN 1670

        218 IF X(3) > 2 THEN 1670

        222 IF X(1) ^ 2 + X(2) ^ 2 + X(3) - 5 > 0 THEN 1670

        225 IF (X(1) - 2) ^ 2 + X(2) ^ 2 + X(3) ^ 2 - 5 > 0 THEN 1670

        422 FOR J44 = 1 TO 3

            435 REM


            437 REM


        455 NEXT J44


        616 P = -((X(1) ^ 2 + X(2) ^ 2 + 2 * X(1) * X(3)) / (X(3) ^ 2 + 5 * X(1) * X(2))) - ((X(1) + 1) / (X(1) ^ 2 - 2 * X(1) + X(2) ^ 2 - 8 * X(2) + 20))


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 3


            1455 A(KLX) = X(KLX)


        1456 NEXT KLX

    1670 NEXT I

    1777 IF M < -999999 THEN 1999

    1904 PRINT A(1), A(2), A(3), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [104]. Its complete output through 

JJJJ=-31995 in one run is shown below.  GW-BASIC also can handle this computer program.


1.000001      1.229833      1      -.8185654      -31999

1.000006      1.230199      1.000001      -.8185661      -31998

1      1.230354      1.000003      -.8185657      -31996

1      1.23025      1      -.8185653      -31995


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with QB64v1000-win [104], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31995 was 2 seconds, counting from “Starting program…”.  Please see the computational results in Jong [16, page 16/21, Problem 6].      

All computational results presented above were obtained from the following computer system:

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz 2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System. 

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Mohamed Abdel-Baset, Ibrahim M. Hezam (2015). An Improved flower pollination algorithm for ratios optimization problems. Applied Mathematics and Information Sciences Letters: An International Journal, 3, No. 2, 83-91 (2015). http://dx.doi.org/10.12785/amisl/030206.

[2] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal of the Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66. http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[3] Harold P. Benson (2002). Using concave envelopes to globally solve the nonlinear sum of ratios problem. Journal of Global Optimization 22: 343-364 (2002)

[4] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.

[5] S. S. Chadha (2002). Fractional programming with absolute-value functions. European Journal of Operational Research 141 (2002) pp. 233-238.

[6] Ching-Ter Chang (2002). On the posynomial fractional programming problems. European Journal of Operational Research 143 (2002) pp. 42-52.

[7] Ching-Ter Chang (2006). Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research 173 (2006) pp. 370-386.

[8] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.

[9] Mirjam Dur, Charoenchai Khompatraporn, Zelda B. Zabinsky (2007). Solving fractional problems with dynamic multistart improving hit-and-run. Annals of Operations Research (2007) 156:25-44.

[10] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[11] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Simulation 18 (2013) 89-98.

[12] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.

[13] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.

[14] Chrysanthos E. Gounaris, Christodoulos A. Floudas. Tight convex underestimators for Csquare-continuous problems: II. multivariate functions. Journal of Global Optimization (2008) 42, pp. 69-89.

[15] Majid Jaberipour, Esmaile Khorram (2010). Solving the sum-of-ratios problems by a harmony search algorithm. Journal of Computational and Applied Mathematics 234 (2010) 733-742.

[16] Yun-Chol Jong (2012). An efficient global optimization algorithm for nonlinear sum-of-ratios problem. www.optimization-online.org/DB_FILE/2012/08/3586.pdf.

[17] Han-Lin Li, Jung-Fa Tsai, Christodoulos A. Floudas (2008). Convex underestimating for posynomial functions of postive variables. Optimization Letters 2, 333-340 (2008).

[18] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp. 882-891.

[19] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.

[20] Hao-Chun Lu, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas (2010). Convex relaxation for solving posynomial problems. Journal of Global Optimization (2010) 46, pp. 147-154.

[21] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.

[22] Hao-Chun Lu (2017). Improved logarithnic linearizing method for optimization problems with free-sign pure discrete signomial terms. Journal of Global Optimization (2017) 68, pp. 95-123.

[23] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.

https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[24] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[25] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/

[26] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.

[27] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[28] C. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.

[29] Lizhen Shao, Matthias Ehrgott (2014). An objective space cut and bound algorithm for convex multiplicative programmes. Journal of Global Optimization (2014) 58:711-728.

[30] Pei-Ping Shen, Yun-Peng Duan, Yong-Gang Pei (2009). A simplicial branch and duality boundalgorithm for the sum of convex-convex ratios problem. Journal of Computational and Applied Mathematics 223 (2009) 145-158.

[31] Pei Ping Shen, Yuan Ma, Yongqiang Chen (2011). Global optimization for the generalized polynomial for the sum of ratios problem. Journal of Global Optimization (2011) 50:439-455.

[32] Peiping Shen, Tongli Zhang, Chunfeng Wang (2017). Solving a class of generalized fractional programming problems using the feasibility of linear programs.

Journal of Inequalities and Applications (2017) 207:147.

[33] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).

[34] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.

[35] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659

[36] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.

[37] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.

[38] Chun-Feng Wang, Xin-Yue Chu (2017). A new branch and bound method for solving sum of linear ratios problem. IAENG International Journal of Applied Mathematics 47:3, IJAM_47_3_06.

[39] Yan-Jun Wang, Ke-Cun Zhang (2004). Global optimization of nonlinear sum of ratios problem. Applied Mathematics and Computation 158 (2004) 319 330.

[40] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[41] Xin-She Yang, Amir Hossein Gandomi (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.

[42] B. D. Youn, K. K. Choi (2004). A new response surface methodology for reliability-based design optimization. Computers and Structures 82 (2004) 241-256.