Sunday, March 2, 2025

Computer program to solve nonlinear fractional programming problems

 


Computer program to solve nonlinear fractional programming problems

Jsun Yui Wong

The computer program listed below seeks to solve the following problem from Jong [16, page 16/21, Problem 6]:  


Minimize ((X(1) ^ 2 + X(2) ^ 2 + 2 * X(1) * X(3)) / (X(3) ^ 2 + 5 * X(1) * X(2))) + ((X(1) + 1) / (X(1) ^ 2 - 2 * X(1) + X(2) ^ 2 - 8 * X(2) + 20))

subject to

X(1) ^ 2 + X(2) ^ 2 + X(3)<=5,

(X(1) - 2) ^ 2 + X(2) ^ 2 + X(3) ^ 2<=5,

1<=X(1) <=3,

1<=X(2) <= 3,

1<=X(3) <= 2.



0 REM  DEFDBL A-Z

1 REM DEFINT I, J, K

2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), LHS(44), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)

85 FOR JJJJ = -32000 TO 32000

    87 RANDOMIZE JJJJ

    88 M = -3D+30

    117 FOR J44 = 1 TO 3


        121 A(J44) = 1 + RND * 2


    126 NEXT J44


    127 FOR I = 1 TO 5000


        129 FOR KKQQ = 1 TO 3


            130 X(KKQQ) = A(KKQQ)


        131 NEXT KKQQ


        139 FOR IPP = 1 TO FIX(1 + RND * 3)


            140 B = 1 + FIX(RND * 3)


            156 IF RND < .5 THEN 160 ELSE GOTO 167


            160 r = (1 - RND * 2) * A(B)


            164 X(B) = A(B) + (RND ^ (RND * 15)) * r


            166 GOTO 168


            167 IF RND < .5 THEN X(B) = A(B) - FIX(RND * 2) ELSE X(B) = A(B) + FIX(RND * 2)


        168 NEXT IPP


        186 FOR J44 = 1 TO 3


            188 REM   X(J44) = INT(X(J44))


        189 NEXT J44


        201 IF X(1) < 1 THEN 1670

        203 IF X(1) > 3 THEN 1670

        211 IF X(2) < 1 THEN 1670

        213 IF X(2) > 3 THEN 1670

        217 IF X(3) < 1 THEN 1670

        218 IF X(3) > 2 THEN 1670

        222 IF X(1) ^ 2 + X(2) ^ 2 + X(3) - 5 > 0 THEN 1670

        225 IF (X(1) - 2) ^ 2 + X(2) ^ 2 + X(3) ^ 2 - 5 > 0 THEN 1670

        422 FOR J44 = 1 TO 3

            435 REM


            437 REM


        455 NEXT J44


        616 P = -((X(1) ^ 2 + X(2) ^ 2 + 2 * X(1) * X(3)) / (X(3) ^ 2 + 5 * X(1) * X(2))) - ((X(1) + 1) / (X(1) ^ 2 - 2 * X(1) + X(2) ^ 2 - 8 * X(2) + 20))


        1111 IF P <= M THEN 1670


        1452 M = P


        1454 FOR KLX = 1 TO 3


            1455 A(KLX) = X(KLX)


        1456 NEXT KLX

    1670 NEXT I

    1777 IF M < -999999 THEN 1999

    1904 PRINT A(1), A(2), A(3), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [104]. Its complete output through 

JJJJ=-31995 in one run is shown below.  GW-BASIC also can handle this computer program.


1.000001      1.229833      1      -.8185654      -31999

1.000006      1.230199      1.000001      -.8185661      -31998

1      1.230354      1.000003      -.8185657      -31996

1      1.23025      1      -.8185653      -31995


Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with QB64v1000-win [104], the wall-clock time (not CPU time) for obtaining the output through JJJJ = -31995 was 2 seconds, counting from “Starting program…”.  Please see the computational results in Jong [16, page 16/21, Problem 6].      

All computational results presented above were obtained from the following computer system:

Processor: Intel (R) Core (TM) i5 CPU M 430 @2.27 GHz 2.26 GHz

Installed memory (RAM): 4.00GB (3.87 GB usable)

System type: 64-bit Operating System. 

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] Mohamed Abdel-Baset, Ibrahim M. Hezam (2015). An Improved flower pollination algorithm for ratios optimization problems. Applied Mathematics and Information Sciences Letters: An International Journal, 3, No. 2, 83-91 (2015). http://dx.doi.org/10.12785/amisl/030206.

[2] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal of the Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66. http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[3] Harold P. Benson (2002). Using concave envelopes to globally solve the nonlinear sum of ratios problem. Journal of Global Optimization 22: 343-364 (2002)

[4] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.

[5] S. S. Chadha (2002). Fractional programming with absolute-value functions. European Journal of Operational Research 141 (2002) pp. 233-238.

[6] Ching-Ter Chang (2002). On the posynomial fractional programming problems. European Journal of Operational Research 143 (2002) pp. 42-52.

[7] Ching-Ter Chang (2006). Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research 173 (2006) pp. 370-386.

[8] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.

[9] Mirjam Dur, Charoenchai Khompatraporn, Zelda B. Zabinsky (2007). Solving fractional problems with dynamic multistart improving hit-and-run. Annals of Operations Research (2007) 156:25-44.

[10] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.

[11] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Simulation 18 (2013) 89-98.

[12] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.

[13] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.

[14] Chrysanthos E. Gounaris, Christodoulos A. Floudas. Tight convex underestimators for Csquare-continuous problems: II. multivariate functions. Journal of Global Optimization (2008) 42, pp. 69-89.

[15] Majid Jaberipour, Esmaile Khorram (2010). Solving the sum-of-ratios problems by a harmony search algorithm. Journal of Computational and Applied Mathematics 234 (2010) 733-742.

[16] Yun-Chol Jong (2012). An efficient global optimization algorithm for nonlinear sum-of-ratios problem. www.optimization-online.org/DB_FILE/2012/08/3586.pdf.

[17] Han-Lin Li, Jung-Fa Tsai, Christodoulos A. Floudas (2008). Convex underestimating for posynomial functions of postive variables. Optimization Letters 2, 333-340 (2008).

[18] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp. 882-891.

[19] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.

[20] Hao-Chun Lu, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas (2010). Convex relaxation for solving posynomial problems. Journal of Global Optimization (2010) 46, pp. 147-154.

[21] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.

[22] Hao-Chun Lu (2017). Improved logarithnic linearizing method for optimization problems with free-sign pure discrete signomial terms. Journal of Global Optimization (2017) 68, pp. 95-123.

[23] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.

https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/

[24] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[25] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/

[26] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.

[27] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[28] C. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.

[29] Lizhen Shao, Matthias Ehrgott (2014). An objective space cut and bound algorithm for convex multiplicative programmes. Journal of Global Optimization (2014) 58:711-728.

[30] Pei-Ping Shen, Yun-Peng Duan, Yong-Gang Pei (2009). A simplicial branch and duality boundalgorithm for the sum of convex-convex ratios problem. Journal of Computational and Applied Mathematics 223 (2009) 145-158.

[31] Pei Ping Shen, Yuan Ma, Yongqiang Chen (2011). Global optimization for the generalized polynomial for the sum of ratios problem. Journal of Global Optimization (2011) 50:439-455.

[32] Peiping Shen, Tongli Zhang, Chunfeng Wang (2017). Solving a class of generalized fractional programming problems using the feasibility of linear programs.

Journal of Inequalities and Applications (2017) 207:147.

[33] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).

[34] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.

[35] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659

[36] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.

[37] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.

[38] Chun-Feng Wang, Xin-Yue Chu (2017). A new branch and bound method for solving sum of linear ratios problem. IAENG International Journal of Applied Mathematics 47:3, IJAM_47_3_06.

[39] Yan-Jun Wang, Ke-Cun Zhang (2004). Global optimization of nonlinear sum of ratios problem. Applied Mathematics and Computation 158 (2004) 319 330.

[40] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[41] Xin-She Yang, Amir Hossein Gandomi (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.

[42] B. D. Youn, K. K. Choi (2004). A new response surface methodology for reliability-based design optimization. Computers and Structures 82 (2004) 241-256.

No comments:

Post a Comment