Saturday, December 20, 2014

Mixed Integer Nonlinear Programming (MINLP) Solver with Hot Starts Applied to Li and Sun's Problem 14.4 but with 10000 Unknowns (instead of 100 Unknowns), Lower Bounds of -1000s, and Upper Bounds of 1000s

Jsun Yui Wong

Similar to the computer programs of the preceding papers, the computer program below seeks to solve Li and Sun's Problem 14.4, [12, p. 415], but with 10000 unknowns instead of 100 unknowns, lower bounds of -1000s instead of -5s, and upper bounds of 1000s instead of 5s.  Like Schittkowski's Test Problems 294-299, their problem refers to the Rosenbrock function--see Schittkowski [16] and Li and Sun [12, p. 415].  Specifically, the test example here is as follows:

Minimize

10000-1
SIGMA     [  100*  ( X(i+1)-X(i)^2  )^2     +    ( 1-X(i) )   ^2   ]
i=1

subject to

-1000<=X(i)<=1000, X(i) integer, i=1, 2, 3,..., 10000.

One notes that line 115 of the following computer program is 115 IF RND<.5 THEN A(J44)=0 ELSE A(J44)=1.  Compare it to 115 A(J44)=-1000+FIX(RND*2001), for example.  With respect to the present test example, the former produces hotter starts.    

However, many real, engineering or not, problems do not give out obvious hot starts.  That makes using hot starts not a regular approach.

One also notes line 170 through line 173.

The present paper uses the IBM Personal Computer BASIC Compiler--through A:\>bascom and A:\>link--Copyright IBM Corp 1982 Version 1.00/Copyright Microsoft, Inc. 1982.

0 DEFINT J,K,B,X
2 DIM A(10001),X(10001)
81 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
111 FOR J44=1 TO 10000
114 REM A(J44)=-11+FIX(RND*23)
115 IF RND<.5 THEN A(J44)=0 ELSE A(J44)=1
117 NEXT J44
128 FOR I=1 TO 32000 STEP .5
129 FOR KKQQ=1 TO 10000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*.3)
140 B=1+FIX(RND*10000)
167 IF RND<.5 THEN X(B)=A(B)-1   ELSE X(B)=A(B) +1
168 REM IF A(B)=0 THEN X(B)=1  ELSE X(B)=0
169 NEXT IPP
170 FOR J44=1 TO 10000
171 IF X(J44)<-1000 THEN X(J44 )=A(J44  )
172 IF X(J44)>1000 THEN X(J44 )=A(J44  )
173 NEXT J44
200 SUMNEWZ=0
203 FOR J44=1 TO   9999
205 SUMNEWZ=SUMNEWZ+  100*  ( X(J44+1)-X(J44)^2  )^2  +  ( 1-X(J44 ) )  ^2
207 NEXT J44
511 SONE=   - SUMNEWZ
689 PD1=SONE
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10000
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1559 GOTO 128
1670 NEXT I
1771 PRINT A(1),A(2),A(3),A(4),A(5)
1775 PRINT A(5996),A(5997),A(5998),A(5999),A(6000)
1779 PRINT A(7996),A(7997),A(7998),A(7999),A(8000)
1953 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run with the IBM Personal Computer BASIC Compiler, Version 1.00.  See the BASIC manual [11, page iii, Preface].  Copied by hand from the screen, the computer program's complete output through JJJJ=-31998 is shown below:

1   1   1   1   1  
1   1   1   1   1
1   1   1   1   1
0        -32000

1   1   1   1   1  
1   1   1   1   1
1   1   1   1   1
0        -31999

1   1   1   1   1  
1   1   1   1   1
1   1   1   1   1
0        -31998

Above there is no rounding by hand; it is just straight copying by hand from the screen.

M=0 is optimal.  See Li and Sun [12, p. 415].

Of the 10000 A's, only the 15 A's of line 1771 and line 1779  are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and  the IBM Personal Computer BASIC Compiler, Copyright IBM Corp 1982 Version 1.00/Copyright Microsoft, Inc. 1982, the wall-clock time for obtaining the output through JJJJ=-31998 was four hours and a half.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] George B. Dantzig, Discrete-Variable Extrenum Problems.  Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[5] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[6] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[7] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[8] M. Junger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G.   Rinaldi, L. A. Woolsey--Editors, 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art.  Springer, 2010 Edition.  eBook; ISBN 978-3-540-68279-0

[9] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[10] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[11] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[12] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[13] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[14] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[15] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Elsevier Science Ltd (1989).

[16] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[17] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[18] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[19] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[20] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html