Sunday, December 7, 2014

Mixed Integer Nonlinear Programming (MINLP) Solver Using Microsoft's GW-BASIC 3.11 Interpreter To Solve Li and Sun's Version of the Rosenbrock Problem but with 10000 General Integer Variables, Second Edition

Jsun Yui Wong

Similar to the computer programs of the preceding papers, the computer program below seeks to solve Li and Sun's Problem 14.4, [11, p. 415], but with 10000 unknowns instead of 100 unknowns.  Schittkowski's Test Problems 294-299 refer to the Rosenbrock function--see Schittkowski [15]  and Li and Sun [11, p. 415].  Specifically, the computer program below tries to solve the following:

Minimize

10000-1
SIGMA  [  100*  ( X(i+1)-X(i)^2  )^2     +    ( 1-X(i) )   ^2   ]
i=1

subject to

-5<=X(i)<=5, X(i) integer, i=1, 2, 3,..., 10000.

While line 128 of the earlier edition is 128 FOR I=1 TO 32000 STEP .5, here line 128
is 128 FOR I=1 TO 32000.

The following computer program uses Microsoft's GW-BASIC 3.11 interpreter.

0 DEFINT J,K,B,X
2 DIM A(10001),X(10001)
81 FOR JJJJ=-32000 TO 32000
85 UB=1+FIX(RND*5)
89 RANDOMIZE JJJJ
90 M=-1.5D+38
111 FOR J44=1 TO 10000
114 IF RND<.5 THEN A(J44)=1 ELSE A(J44)=0
117 NEXT J44
128 FOR I=1 TO 32000
129 FOR KKQQ=1 TO 10000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10000)
167 IF RND<.5 THEN X(B)=CINT(A(B)-1)   ELSE X(B)=CINT(A(B)     +1   )
169 NEXT IPP
170 FOR J44=1 TO 10000
171 IF X(J44)>UB THEN X(J44 )=A(J44  )
172 IF X(J44)<-5 THEN X(J44 )=A(J44  )
173 NEXT J44
174 GOTO 200
200 SUMNEWZ=0
203 FOR J44=1 TO           9999
205 SUMNEWZ=SUMNEWZ+                  100*  ( X(J44+1)-X(J44)^2  )^2     +         ( 1-X(J44 ) )   ^2
207 NEXT J44
411 REM   SONE=  - (X(1)-1)^2 -  ( X(10000)-1)^2  -10000* SUMNEWZ
511    SONE=   - SUMNEWZ
689 PD1=SONE
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10001
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 SS=S
1558 REM PRINT A(1),A(2),A(3),A(9999),A(10000),M,JJJJ
1559 GOTO 128
1670 NEXT I
1953 PRINT A(1),A(2),A(3),A(9999),A(10000),M,JJJJ
1959 REM PRINT M,JJJJ,A(10001),SS
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS.  See the BASIC manual [11].  Copied by hand from the screen, the computer program's complete output through JJJJ=-31999 is shown below:

1        1        1        1        1
-201        -32000

1        1        1        1        1
0        -31999

Above there is no rounding by hand; it is just straight copying by hand from the screen.

M=0 is optimal.  See Li and Sun [11, p. 415].

Of the 10000 A's, only the 5 A's of line 1953 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31999 was eight  hours.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables.    Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method.  Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation.  The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] George B. Dantzig, Discrete-Variable Extrenum Problems.  Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.

[5] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.  Mathematical Programming, 36:307-339, 1986.

[6] D. M. Himmelblau, Applied Nonlinear Programming.  New York: McGraw-Hill Book Company, 1972.

[7] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1981.

[8] Jack Lashover (November 12, 2012).  Monte Carlo Marching.  www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[9] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 14, No. 6 (Nov. - Dec., 1966), pp. 1098-1112.

[10] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems.  Operations Research, Vol. 15, No. 3 (May - June, 1967), p. 578.

[11] Duan Li, Xiaoling Sun, Nonlinear Integer Programming.  Springer Science+Business Media,LLC (2006).  http://www.books.google.ca/books?isbn=0387329951

[12] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[13] Harvey M. Salkin, Integer Programming.  Menlo Park, California: Addison-Wesley Publishing Company (1975).

[14] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming.  Elsevier Science Ltd (1989).

[15] K. Schittkowski, More Test Examples for Nonlinear Programming Codes.  Springer-Verlag, 1987.

[16] S. Surjanovic, Zakharov Function.  www.sfu.ca/~ssurjano/zakharov.html

[17] Jsun Yui Wong (2012, April 23).  The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell.   http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[18] Jsun Yui Wong (2013, September 4).  A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition.  http://myblogsubstance.typepad.com/substance/2013/09/

[19] Jsun Yui Wong (2014, June 27).  A Unified Computer Program for Schittkowski's Test Problem 377, Second Edition.  http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html