Tuesday, October 27, 2015

Testing the Domino Method of General Integer Nonlinear Programming with Brown’s Almost Linear System of Twenty Equations

Jsun Yui Wong

The following computer program seeks to solve simultaneously Brown's almost linear system of twenty equations; see Morgan [3, page 15], Floudas [1, page 660], and the preceding paper.

The following computer program uses qb64v1000-win [5, 6].

0 DEFDBL A-Z
3 DEFINT J, K

4 DIM X(42), A(42), L(33), K(33)
5 FOR JJJJ = -32000 TO 32000
    14 RANDOMIZE JJJJ
    16 M = -1D+17
    91 FOR KK = 1 TO 20


        94 A(KK) = RND * 5


    95 NEXT KK

    128 FOR I = 1 TO 100000 STEP 1
        129 FOR K = 1 TO 20

            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 20)

            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE X(B) = CINT(A(B))

        191 NEXT IPP



        391 IF (X(2) * X(3) * X(4) * X(5) * X(6) * X(7) * X(8) * X(9) * X(10) * X(11) * X(12) * X(13) * X(14) * X(15) * X(16) * X(17) * X(18) * X(19) * X(20)) < .001 THEN 1670



        401 X(1) = (1) / (X(2) * X(3) * X(4) * X(5) * X(6) * X(7) * X(8) * X(9) * X(10) * X(11) * X(12) * X(13) * X(14) * X(15) * X(16) * X(17) * X(18) * X(19) * X(20))



        501 summ = 0
        505 FOR j27 = 1 TO 20


            511 summ = summ + X(j27)

        521 NEXT j27


        881 P = -ABS(X(1) + summ - 21) - ABS(X(2) + summ - 21) - ABS(X(3) + summ - 21) - ABS(X(4) + summ - 21) - ABS(X(5) + summ - 21) - ABS(X(6) + summ - 21) - ABS(X(7) + summ - 21) - ABS(X(8) + summ - 21) - ABS(X(9) + summ - 21) - ABS(X(10) + summ - 21) - ABS(X(11) + summ - 21) - ABS(X(12) + summ - 21) - ABS(X(13) + summ - 21) - ABS(X(14) + summ - 21) - ABS(X(15) + summ - 21) - ABS(X(16) + summ - 21) - ABS(X(17) + summ - 21) - ABS(X(18) + summ - 21) - ABS(X(19) + summ - 21)


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 20

            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P
    1670 NEXT I
    1890 IF M < -.00001 THEN 1999


    1912 PRINT A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), A(11), A(12), A(13), A(14)

    1915 PRINT A(15), A(16), A(17), A(18), A(19), A(20), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [5, 6]. Copied by hand from the screen, the computer program’s complete output through
JJJJ= -31974 is shown below.

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -32000

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31999
1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31998

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31997

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31996
1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31995

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31992

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31991
1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31988

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31987

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31986
1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31985

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31984

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31983
1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31981

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31980

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31979

1.00000002405578               1.000000005919952                                          1
1.000000051201943             1.000000013496996                                          1.00000006141003
1.00000004830274               1.000000042790504                                          1.000000025578463
1                  1.00000007854793            1.000000120518811
1.000000117993434             1.000000123710394
1.00000002889907               1.0000001420905                1
1.00000006831842       1.000000099978106          .9999989471875357
-1.052824407210551D-06            -31978

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31976

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31975

1       1       1       1       1
1       1       1       1       1
1       1       1       1      
1       1       1       1       1
1         0         -31974

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [5, 6], the wall-clock time for obtaining the output through JJJJ= -31974 was five minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[2] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[5] E.K. Virtanen (2008-05-26). “Interview With Galleon”.
http://www.basicprogramming.org/PCOPY! issue70/#galleoninterview

[6] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

No comments:

Post a Comment