Saturday, December 19, 2015

Seeking an Integer Solution to a Rosenbrock System of 11100 Simultaneous Equations

Jsun Yui Wong

The following computer program seeks to find an integer solution to Problem 10 in Cao [2, page 9, Problem 10 (extended Rosenbrock function)]–http://dx.doi.org/10.1155/2014/251587. See also La Cruz et al. [5, page 21, Test function 5]–http://www.ime.unicamp.br/~martinez/lmrreport.pdf. The present paper considers the case of 11100 equations with 11100 variables. One notes the initial guess, 94 A(KK) = FIX(RND * 1.9).

0 DEFDBL A-Z

3 DEFINT J, K, X


4 DIM X(32768), A(32768), P(32768), K(32768), Q(2222)


5 FOR JJJJ = -32000 TO -32000



    14 RANDOMIZE JJJJ
    16 M = -1D+50


    91 FOR KK = 1 TO 11100

        94 A(KK) = FIX(RND * 1.9)



    96 NEXT KK




    128 FOR I = 1 TO 12000000 STEP 1




        129 FOR K = 1 TO 11100



            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 11103)




            183 R = (1 - RND * 2) * A(B)

            187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1




        191 NEXT IPP




        393 FOR J44 = 1 TO 5550



            395 X(2 * J44 - 1) = 1


        397 NEXT J44


        773 FOR J44 = 1 TO 5550



            775 P(2 * J44 - 1) = -ABS(10 * (X(2 * J44) - X(2 * J44 - 1) ^ 2))



        777 NEXT J44

        822 Pone = 0


        833 FOR J44 = 1 TO 5550


            837 Pone = Pone + P(2 * J44 - 1)


        855 NEXT J44



        998 P = Pone


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 11100


            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P


        1668 IF M > -.00001 THEN 1891


    1670 NEXT I

    1891 PRINT A(1), A(2), A(3), A(4), A(5)

    1892 PRINT A(6), A(7), A(8), A(9), A(10)


    1919 PRINT A(11096), A(11097), A(11098)

    1939 PRINT A(11099), A(11100), M, JJJJ


1999 NEXT JJJJ

This computer program was run with qb64v1000-win [11]. Copied by hand from the screen, the computer program’s output through JJJJ= -32000 is summarized below.

1   1   1   1   1
1   1   1   1   1
1   1   1
1   1   0   -32000

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 11100 unknowns, only the 15 A’s of line 1891 through line 1939 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [11], the wall-clock time for obtaining the output through JJJJ= -32000 was 7 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] Huiping Cao, Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[4] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[5] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf

[6] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[7] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[8] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[10] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[11] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[12] M. Ziani, F. Guyomarc’h, An Autoadaptive Limited Memory Broyden’s Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211. web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf





No comments:

Post a Comment