Monday, December 28, 2015

The Domino Method of Nonlinear Integer/Continuous/Discrete Programming Seeking an Integer Solution to a Cragg and Levy Nonlinear System of 10000 Simultaneous Equations

Jsun Yui Wong

The following computer program seeks to find an integer solution to the Cragg and Levy nonlinear system on page 28 of La Cruz et al. [5, page 28, Test function 38, extended Cragg and Levy problem (n is a multiple of 4)].–http://www.ime.unicamp.br/~martinez/lmrreport.pdf.  The present paper considers the case of 10000 equations with 10000 general integer variables. One notes the starting vectors, 94 A(KK) = FIX(RND * 1.9).  One also notes lines 395, 445, 495, 775, and 837.


0 REM DEFDBL A-Z

3 DEFINT J, K, X

4 DIM X(32768), A(32768), P(32768), K(32768), Q(2222)

5 FOR JJJJ = -32000 TO -32000

    14 RANDOMIZE JJJJ
    16 M = -1D+50

    91 FOR KK = 1 TO 10000

        94 A(KK) = FIX(RND * 1.9)

    96 NEXT KK

    128 FOR I = 1 TO 240000 STEP 1

        129 FOR K = 1 TO 10000

            131 X(K) = A(K)
        132 NEXT K

        155 FOR IPP = 1 TO FIX(1 + RND * 3)
            181 B = 1 + FIX(RND * 10003)


            183 REM R = (1 - RND * 2) * A(B)


            187 REM IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 4 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 7 * R ELSE IF RND < .5 THEN X(B) = FIX(A(B)) ELSE X(B) = FIX(A(B)) + 1


            189 IF RND < .5 THEN X(B) = ABS(A(B) - 1) ELSE X(B) = A(B) + 1


        191 NEXT IPP


        393 FOR J44 = 1 TO 2500

            395 X(4 * J44) = 1


        397 NEXT J44


        443 FOR J44 = 1 TO 2500

            445 X(4 * J44 - 1) = X(4 * J44)


        447 NEXT J44



        493 FOR J44 = 1 TO 2500

            495 X(4 * J44 - 2) = X(4 * J44 - 1)


        497 NEXT J44


        773 FOR J44 = 1 TO 2500


            775 P(4 * J44 - 3) = -ABS((EXP(X(4 * J44 - 3)) - X(4 * J44 - 2)) ^ 2)


        777 NEXT J44

        822 Pone = 0


        833 FOR J44 = 1 TO 2500


            837 Pone = Pone + P(4 * J44 - 3)

        855 NEXT J44

        998 P = Pone


        1451 IF P <= M THEN 1670
        1657 FOR KEW = 1 TO 10000

            1658 A(KEW) = X(KEW)
        1659 NEXT KEW
        1661 M = P
        1666 PRINT A(1), A(10000), M, JJJJ


        1668 IF M > -.00001 THEN 1891


    1670 NEXT I

    1891 PRINT A(1), A(2), A(3), A(4), A(5)

    1892 PRINT A(6), A(7), A(8), A(9), A(10)
    1895 PRINT A(9994), A(9995), A(9996), A(9997), A(9998)

    1939 PRINT A(9999), A(10000), M, JJJJ

1999 NEXT JJJJ


This computer program was run with qb64v1000-win [11]. Copied by hand from the screen, the computer program’s output through JJJJ= -32000 is summarized below.


.
.
.
0   1     -23.61994     -32000
0   1     -20.66745     -32000
0   1     -17.71495     -32000
0   1     -14.76246     -32000
0   1     -11.80997     -32000
0   1     -8.857477     -32000
0   1     -5.904985      -32000
0   1     -2.952492      -32000
0      1     0     -32000
0   1   1   1   0
1   1   1   0   1
1   1   1   0   1
1   1   0   -32000

Above there is no rounding by hand; it is just straight copying by hand from the screen.

Of the 10000 unknowns, only the 17 A’s of line 1891 and line 1939 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [11], the wall-clock time for obtaining the output through JJJJ= -32000 was three minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.

[2] Huiping Cao, Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587

[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.

[4] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am

[5] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf

[6] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.

[7] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[8] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.

[10] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.

[11] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[12] M. Ziani, F. Guyomarc’h, An Autoadaptive Limited Memory Broyden’s Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211. web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf

No comments:

Post a Comment