Thursday, August 17, 2017

Solving a Cantilever Beam Design Problem with the General Mixed Integer Nonlinear Programming (MINLP) Solver Presented Here

Jsun Yui Wong

The computer program listed below seeks to solve the following cantilever beam design problem in Yang  et al.[13]:

Minimize       .0624 * (X(1) + X(2) + X(3) + X(4) + X(5))

subject to      61 / (X(1) ^ 3) + 37 / (X(2) ^ 3) + 19 / (X(3) ^ 3) + 7 / (X(4) ^ 3) + 1 / (X(5) ^ 3)     -1  <=0

        0.01<= X(i) <=100, i=1, 2, 3, 4, 5.
     
The X(6) below is a slack variable.

One notes line 269, which is 269 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0.

0 REM DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37

    64 FOR J44 = 1 TO 5

        65 A(J44) = 1 + RND * 10

        67 REM
        68 REM


    69 NEXT J44

    128 FOR I = 1 TO 30000


        129 FOR KKQQ = 1 TO 5

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 3))


            181 J = 1 + FIX(RND * 5)


            183 R = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * R
        222 NEXT IPP

        241 X(6) = 1 - 61 / (X(1) ^ 3) - 37 / (X(2) ^ 3) - 19 / (X(3) ^ 3) - 7 / (X(4) ^ 3) - 1 / (X(5) ^ 3)

        255 FOR J77 = 1 TO 5

            257 IF X(J77) < .01 THEN 1670

            258 IF X(J77) > 100 THEN 1670


        259 NEXT J77

        268 FOR J99 = 6 TO 6


            269 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0
        270 NEXT J99
        318 POBA = -.0624 * (X(1) + X(2) + X(3) + X(4) + X(5)) + 1000000 * X(6)


        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 6

            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1557 GOTO 128

    1670 NEXT I
    1889 IF M < -1.339957 THEN 1999

    1900 PRINT A(1), A(2), A(3), A(4)
    1901 PRINT A(5), A(6), M, JJJJ
1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [12].  The complete output through JJJJ=-31967.99 is shown below:

6.017338         5.308079         4.493506         3.501398
2.15334         0         -1.339956         -31967.99

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [12], the wall-clock time for obtaining the output through JJJJ=-31967.99 was 11 minutes.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[4]  Ming-Hua Lin, Jung-Fa Tsai, Ming-Hua Lin (2014).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2014) 46:7, pp. 863-879.

[5]   Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[6] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[7]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[8]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[9]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[10]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[11]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[12] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64    

[13] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf

[14] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/


No comments:

Post a Comment