Tuesday, August 22, 2017

Solving a Gear Train Design Problem with the Method of This Blog

Jsun Yui Wong

The computer program listed below seeks to solve the following problem in Gandomi, Alavi, and Yang [4, pp. 25-27].

Minimize ABS((1 / 6.931) - ((X(3) * X(2)) / (X(1) * X(4))))

where the four unknowns are integers in the range 12-60.

0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37


    71 FOR J40 = 1 TO 4

        74 A(J40) = 12 + RND * 49


    77 NEXT J40


    128 FOR I = 1 TO 10000


        129 FOR KKQQ = 1 TO 4


            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 3))


            181 J = 1 + FIX(RND * 4)


            183 R = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * R
        222 NEXT IPP


        223 FOR J41 = 1 TO 4


            225 X(J41) = INT(X(J41))


        235 NEXT J41


        256 FOR J47 = 1 TO 4

            257 IF X(J47) < 12 THEN 1670
            258 IF X(J47) > 60 THEN 1670


        259 NEXT J47


        333 POBA = -ABS((1 / 6.931) - ((X(3) * X(2)) / (X(1) * X(4))))


        466 P = POBA

        1111 IF P <= M THEN 1670


        1452 M = P
        1454 FOR KLX = 1 TO 4


            1455 A(KLX) = X(KLX)
        1456 NEXT KLX
        1557 GOTO 128

    1670 NEXT I
    1889 IF M < -.000002 THEN 1999

    1900 PRINT A(1), A(2), A(3), A(4)
    1902 PRINT M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [15].  The complete output through JJJJ=  -31999.67000000005 is shown below:

49        16       19        43
-1.643428473917233D-06         -31999.76000000004

43        19       16        49
-1.643428473917233D-06         -31999.67000000005

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.

The solution above is comparable to the four solutions presented in Table 15 of Gandomi, Alavi, and Yang [4, p. 27].

One notes that here the gear ratio=(16*19)/(49*43)=.144280968.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [15], the wall-clock time for obtaining the output through JJJJ=  -31999.67000000005 was 10 seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1]  Yuichiro Anzai (1974).  On Integer Fractional Programming.  Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.

[2]  Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.     .

[3]  H. Chickermane, H. C. Gea (1996)  Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.

[4]  Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013).  Cuckoo search algorithm:  a metaheuristicapproach to solve structural optimization problem.  Engineering with Computers (20130 29:17-35.

[5]  Han-Lin Li, Jung-Fa Tsai (2008).  A distributed computational algorithm for solving portfolio problems with integer variables.  European Journal of Operational Research 186 (2008) pp.882-891.

[6]  Ming-Hua Lin, Jung-Fa Tsai (2014).  A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization  (2014) 46:7, pp. 863-879.

[7]  Harry Markowitz  (1952).   Portfolio Selection.   The Journal of Finance  7 (2008) pp. 77-91.

[8]  Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[9]  Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016.  www.springer.com/cda/content/document/cda.../

[10]  H. S. Ryoo, N. V. Sahinidis (1995).  Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.

[11]  Jung-Fa Tsai (2005).  Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization  (2005) 37:4, pp. 399-409.

[12]  Jung-Fa Tsai, Ming-Hua Lin (2007).  Finding all solutions of systems of nonlinear equations with free variables.  Engineering Optimization  (2007) 39:6, pp. 649-659

[13]  Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007).  On generalized geometric programming problems with non-positive variables.  European Journal of Operational Research 178 (2007) pp. 10-19.

[14]  Jung-Fa Tsai, Ming-Hua Lin (2008).  Global optimization of signomial mixed-integer nonlinear programming with free variables.  Journal of Global Optimization  (2008) 42  pp. 39-49.

[15] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.    

[16] Jsun Yui Wong (2012, April 12).  The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/

[17] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014).  True global optimality of the pressure vessel design problem:  A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.

No comments:

Post a Comment