The computer program listed below seeks to solve the following 100-variable problem:
Minimize - (1 / 2) * ((X(1) ^ 4 - 16 * X(1) ^ 2 + 5 * X(1)) + (X(2) ^ 4 - 16 * X(2) ^ 2 + 5 * X(2)) + (X(3) ^ 4 - 16 * X(3) ^ 2 + 5 * X(3)) + (X(4) ^ 4 - 16 * X(4) ^ 2 + 5 * X(4)) +...+ (X(99) ^ 4 - 16 * X(99) ^ 2 + 5 * X(99)) + (X(100) ^ 4 - 16 * X(100) ^ 2 + 5 * X(100))),
-5<= X(1), X(2), X(3), ..., X(98), X(99), X(100) <=2.
The problem above is a modified version of the last problem in Table 2 of Gounaris and Floudas [9, p. 88].
One notes line 67, which is 67 A(J55) = -5 + FIX(RND * 7.1) * 1.
0 DEFDBL A-Z
2 DEFINT K
3 DIM B(199), N(199), A(199), H(199), L(199), U(199), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01
14 RANDOMIZE JJJJ
16 M = -1D+37
22 FOR J55 = 1 TO 100
67 A(J55) = -5 + FIX(RND * 7.1) * 1
71 NEXT J55
128 FOR I = 1 TO 5000000
129 FOR KKQQ = 1 TO 100
130 X(KKQQ) = A(KKQQ)
131 NEXT KKQQ
133 FOR IPP = 1 TO (1 + FIX(RND * 100))
181 J = 1 + FIX(RND * 100)
183 REM r = (1 - RND * 2) * A(J)
187 REM X(J) = A(J) + (RND ^ (RND * 10)) * r
189 X(J) = -5 + FIX(RND * 7.1) * 1
191 NEXT IPP
200 FOR J44 = 1 TO 100
201 IF X(J44) < -5 THEN 1670
203 IF X(J44) > 2 THEN 1670
255 NEXT J44
301 ssuumm = 0
305 FOR J44 = 1 TO 100
308 ssuumm = ssuumm + X(J44) ^ 4 - 16 * X(J44) ^ 2 + 5 * X(J44)
311 NEXT J44
359 REM
361 REM
364 POBA = (1 / 2) * ssuumm
466 P = POBA
1111 IF P <= M THEN 1670
1452 M = P
1454 FOR KLX = 1 TO 100
1459 A(KLX) = X(KLX)
1460 NEXT KLX
1557 REM GOTO 128
1670 NEXT I
1889 REM IF M < 2998 THEN 1999
1900 PRINT A(1), A(2), A(3), A(4), A(5)
1911 PRINT A(6), A(7), A(8), A(9), A(10)
1915 PRINT A(11), A(12), A(13), A(14), A(15)
1917 PRINT A(16), A(17), A(18), A(19), A(20)
1918 PRINT A(21), A(22), A(23), A(24), A(25)
1919 PRINT A(26), A(27), A(28), A(29), A(30)
1928 PRINT A(91), A(92), A(93), A(94), A(95)
1929 PRINT A(96), A(97), A(98), A(99), A(100), M, JJJJ
1999 NEXT JJJJ
This BASIC computer program was run with qb64v1000-win [26]. The complete output through JJJJ = -31999.90000000002 is shown below:
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -32000
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.99
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.98
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.97000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.96000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.95000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.94000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.93000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.92000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
10000 -31999.91000000001
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
-5 -5 -5 -5 -5
0 -5 -5 -5 -5
-5 -5 -5 -5 -5
9900 -31999.90000000002
Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.
Because of line 1900 through line 1929, only 40 of the 100 A's are shown above. The objective function value at JJJJ=-32000, for example, is optimal; the objective function value of 9900 at JJJJ=-31999.90000000002 is not optimal.
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [26], the wall-clock time for obtaining the output through JJJJ= -31999.90000000002 was 40 minutes.
Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
References
[1] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal of the Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.
[2] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529. .
[3] Ching-Ter Chang (2006). Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research 173 (2006) pp. 370-386.
[4] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.
[5] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.
[6] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.
[7] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.
[8] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.
[9] Chrysanthos E. Gounaris, Christodoulos A. Floudas. Tight convex underestimators for Csquare-continuous problems: II. multivariate functions. Journal of Global Optimization (2008) 42, pp. 69-89.
[10] Han-Lin Li, Jung-Fa Tsai, Christodoulos A. Floudas (2008). Convex underestimating for posynomial functions of postive variables. Optimization Letters 2, 333-340 (2008).
[11] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp. 882-891.
[12] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.
[13] Hao-Chun Lu, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas (2010). Convex relaxation for solving posynomial problems. Journal of Global Optimization (2010) 46, pp. 147-154.
[14] Hao-Chun Lu (2017). Improved logarithnic linearizing method for optimization problems with free-sign pure discrete signomial terms. Journal of Global Optimization (2017) 68, pp. 95-123.
[15] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/
[16] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[17] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/
[18] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.
[19] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.
[20] c. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.
[21] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).
[22] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.
[23] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659
[24] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.
[25] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.
[26] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[27] Jsun Yui Wong (2012, April 12). The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/
[28] Helen Wu (2015). Geometric Programming. https://optimization.mccormick.northwstern.edu/index.php/Geometric_Programming.
[29] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014). True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. https://arxiv.org/pdf/1403.7793.pdf.
[30] Xin-She Yang, Amir Hossein Gandomi (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.
[31] B. D. Youn, K. K. Choi (2004). A new responsesurface methodology for reliability-based design optimization. Computers and Structures 82 (2004) 241-256.