Sunday, October 15, 2017

Solving an Integer, Continuous, and Nonlinear Fractional Programming Problem

Jsun Yui Wong

The computer program listed below seeks to solve Tsai’s Example 3 [20, p. 408] plus the restrictions that X(1) and X(2) are integer variables.  In other words,
minimize (2 + X(5)) / (X(1) * X(2) * (2 * X(3) + X(4))) – X(5) ^ .5 * X(3) ^ 1.5 + 2 * X(2) + X(4)
subject to
8 / (X(1) * (X(2) + 3 * X(4)) ^ 2) + 1 / (X(5) ^ 3)<=2,
– 2 * X(1) + X(3) – X(4)<=10,
X(1) + X(3) + .5 * X(5)<=8,
0.1<X(1), X(2), X(3), X(4), X(5)<=10,
X(1) and X(2) are integers.

One notes line 193 and line 195, which are 193 X(1) = INT(X(1)) and 195 X(2) = INT(X(2)).

0 DEFDBL A-Z

2 DEFINT K

3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO 32000 STEP .01

    14 RANDOMIZE JJJJ
    16 M = -1D+37
    70 FOR J44 = 1 TO 5

        72 A(J44) = .1 + RND * 9.9



    73 NEXT J44



    128 FOR I = 1 TO 1000


        129 FOR KKQQ = 1 TO 5

            130 X(KKQQ) = A(KKQQ)
        131 NEXT KKQQ
        133 FOR IPP = 1 TO (1 + FIX(RND * 4))



            181 J = 1 + FIX(RND * 5)

            183 r = (1 - RND * 2) * A(J)
            187 X(J) = A(J) + (RND ^ (RND * 10)) * r

        191 NEXT IPP

        193 X(1) = INT(X(1))
        195 X(2) = INT(X(2))

        196 FOR J99 = 1 TO 5

            201 IF X(J99) < .1 THEN 1670
            203 IF X(J99) > 10 THEN 1670
        204 NEXT J99

        305 X(6) = 2 - 8 / (X(1) * (X(2) + 3 * X(4)) ^ 2) - 1 / (X(5) ^ 3)



        306 X(7) = 10 + 2 * X(1) - X(3) + X(4)



        307 X(8) = 8 - X(1) - X(3) - .5 * X(5)

        325 FOR J99 = 6 TO 8

            327 XX(J99) = X(J99)



            330 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0

        331 NEXT J99



        357 POBA = -(2 + X(5)) / (X(1) * X(2) * (2 * X(3) + X(4))) + X(5) ^ .5 * X(3) ^ 1.5 - 2 * X(2) - X(4) + 1000000 * (X(6) + X(7) + X(8))



        466 P = POBA

        1111 IF P <= M THEN 1670



        1452 M = P
        1454 FOR KLX = 1 TO 8



            1459 A(KLX) = X(KLX)
        1460 NEXT KLX
        1557 GOTO 128

    1670 NEXT I



    1889 IF M < 19.66716 THEN 1999


    1900 PRINT A(1), A(2), A(3), A(4), A(5)

    1902 PRINT A(6), A(7), A(8)

    1912 PRINT M, JJJJ

1999 NEXT JJJJ

This BASIC computer program was run with qb64v1000-win [24]. The complete output through JJJJ = -31991.8900000013 is shown below:

1       1        5.305667124554657         .337658200135698
3.388665750861434
.0       0       0
19.66716832645138         -31996.3200000006

1       1        5.305604649517398         .3376577173193283.
3.388790700959914
.0       0       0
19.6671691557842           -31993.730000001

1       1        5.303200376710177         .3376391826591685.
3.393599246578964
.0       0       0
19.6671855740736           -31991.8900000013

Above there is no rounding by hand; it is just straight copying by hand from the monitor screen.
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [24], the wall-clock time for obtaining the output through JJJJ= -31991.8900000013 was 45 seconds, including the time for creating the .EXE file.

Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References
[1] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66.
http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.
[2] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529. .
[3] H. Chickermane, H. C. Gea (1996) Structural optimization using a new local approximation method, International Journal for Numerical Methods in Engineering, 39, pp. 829-846.
[4] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.
[5] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.
[6] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.
[7] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.
[8] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.
[9] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp.882-891.
[10] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.9
[11] Harry Markowitz (1952). Portfolio Selection. The Journal of Finance 7 (2008) pp. 77-91.
[12] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/
[13] Ong Kok Meng, Ong Pauline, Sia Chee Kiong, H. A. Wahab, N. Jafferi. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem. IOP Conf. Series: Materials Science and Engineering 165 (2017) 012032.
[14] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[15] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/
[16] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.
[17] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.
[18] c. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.
[19] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).
[20] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.
[21] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659
[22] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.
[23] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.
[24] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[25] Jsun Yui Wong (2012, April 12). The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/
[26] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014). True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms.
https://arxiv.org/pdf/1403.7793.pdf.
[27] Xin-She Yang, Amir Hossein Gandomi (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.
[28] B. D. Youn, K. K. Choi (2004). A new responsesurface methodology for reliability-based design optimization.  Computers and Structures 82 (2004) 241-256.

No comments:

Post a Comment